目录
Quickstart: 本地部署 Weaviate 与 Ollama 快速指南
Quickstart: 本地部署 Weaviate 与 Ollama 快速指南
本文将带你在 30 分钟内快速上手,通过本地部署的方式,将开源 Weaviate 与 Ollama 模型结合,实现数据的向量化、语义搜索以及生成式检索(Retrieval Augmented Generation, RAG)。整个流程无需额外前置条件,只需要安装 Docker 与 Ollama 即可。
一、预备知识
在开始之前,请确保你已经在本地安装了以下工具:
- Docker:用于运行 Weaviate 实例。
- Ollama:用于生成文本向量与执行生成任务。
接下来,运行以下命令以下载所需的模型:
ollama pull nomic-embed-text
ollama pull llama3.2
建议使用至少 8GB(最好 16GB 及以上)的现代计算机以获得更好的体验。
二、步骤一:部署 Weaviate 实例
1.1 创建 Weaviate 数据库
首先,在你的项目目录下创建一个名为 docker-compose.yml 的文件,并将以下代码粘贴进去:
事选创建好目录
mkdir /home/hum/weaviate/data
---
services:
weaviate:
command:
- --host
- 0.0.0.0
- --port
- '8080'
- --scheme
- http
image: semitechnologies/weaviate:1.28.10
ports:
- 8080:8080
- 50051:50051
volumes:
- /home/hum/weaviate/data:/var/lib/weaviate
restart: on-failure:0
environment:
QUERY_DEFAULTS_LIMIT: 25
AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED: 'true'
PERSISTENCE_DATA_PATH: '/var/lib/weaviate'
ENABLE_API_BASED_MODULES: 'true'
ENABLE_MODULES: 'text2vec-ollama,generative-ollama'
CLUSTER_HOSTNAME: 'node1'

最低0.47元/天 解锁文章
6010

被折叠的 条评论
为什么被折叠?



