作为曾参与12306余票查询系统高并发升级的技术从业者,笔者注意到公众对于12306底层技术常存在认知盲区。为破解这一迷思,特此分享十年前的架构解密文献(该技术之前名叫 gemfire 现已晋升为Apache顶级项目Geode,代码库详见:https://github.com/apache/geode),供技术爱好者探讨研习。
Geode的核心价值在于其高并发处理机制,尤其适用于数据规模适中但需应对瞬时流量洪峰的场景。以12306余票计算为例:当业务面临千万级QPS并发查询时,通过分布式内存架构实现毫秒级响应,这正是其不可替代性所在。
对于一般企业而言,若未遭遇类似12306的极端流量压力,现有技术栈已足够支撑。但对于面临业务爆发增长或响应延迟瓶颈的系统,在当下内存成本持续走低的趋势下,可考虑通过内存计算扩容提升系统承载力。如有技术实现层面的疑问,欢迎在评论区深入交流。
背景:12306系统的演进与挑战
自2011年下半年上线的12306互联网售票系统,曾被寄予“数字春运”重任。然而,在2012年春运期间,系统频频崩溃、页面卡顿、支付失败等问题,引发了大量用户吐槽与舆论关注。这些问题的根源在于:系统架构对“极端并发”的处理能力存在显著短板。
高并发:远超传统经验的“流量洪峰”
传统IT系统中,高并发通常定义为平时流量的3-5倍。这个经验在电商促销(如“双十一”)或限时活动中尚可适用,但对于春运期间的12306,显得远远不够。
-
平日PV(日页面访问量):约 2500万~3000万
-
2015年春运高峰日PV:高达297亿
-
增长倍数:超过1000倍
这不是“稍微忙一点”的问题,而是“秒杀级”的技术灾难。
技术应对:引入Gemfire的分布式内存计算
2012年春运后,项目团队意识到传统数据库+应用服务器架构无法满足业务爆发需求。经过多轮POC测试和方案论证,最终选择由VMware(后属Pivotal)提供的 Gemfire 分布式内存数据平台,作为突破性能瓶颈的关键组件。
Gemfire 具备以下关键能力:
-
内存级存取,毫秒响应:查询操作全部在内存中完成,避免磁盘I/O瓶颈。
-
分布式并行计算:数据按Region分片分布在多个节点,自动负载均衡。
-
瞬时扩容能力:支持在线增删节点,适应突发流量的快速拉升。
-
高可用架构:支持主备复制,节点失效自动转移。
为什么Gemfire,而不是Redis、Memcached?
虽然Redis、Memcached也可作为缓存层解决方案,但在12306这种数据量大 + 查询模式复杂 + 高一致性要求的场景下,Gemfire 提供了更具工程化能力的企业级特性,如:
-
数据建模灵活(结构化Region + 多索引支持)
-
支持Function Service实现分布式聚合计算
-
支持事务、持久化与异地多活
总结:架构演进的典型范例
12306从“传统三层架构”向“分布式内存计算平台”的演进,是国内早期应对超大规模互联网流量挑战的标志性案例之一。它所采用的技术路径与今天“内存优先”、“云原生缓存层”的理念不谋而合,值得所有面对高并发挑战的技术团队深入研究和借鉴。
如果你打算将这部分内容发在知乎、公众号或者公司技术博客,我可以帮你再润色成更具阅读体验的文章体。如果你想继续扩展(比如讲讲Region如何建模、与Oracle DB如何协同、流控怎么做的等),我也可以帮你拆成技术专题系列。
这里面3篇当时我司CTO的技术文章以供感兴趣的工程师参考
技术揭秘12306改造(一):尖峰日PV值297亿下可每秒出票1032张