CubeStudio 在线开发:Jupyter 创建 GPU 类型容器后无法识别显卡的解决方法

目录

CubeStudio 在线开发:Jupyter 创建 GPU 类型容器后无法识别显卡的解决方法

💥 问题复现

✅ 正确输入方式

🔧 解决步骤回顾

1. 确认 PyTorch 为 GPU 版本

2. 运行 nvidia-smi 检查显卡是否挂载

3. 修正 CubeStudio 的 GPU 配置参数

🎯 总结

🔚 结语


CubeStudio 在线开发:Jupyter 创建 GPU 类型容器后无法识别显卡的解决方法

在使用 CubeStudio 在线开发平台创建带有 GPU 能力的 Jupyter Notebook 容器时,很多用户可能会遇到一个令人困惑的问题:

在容器中成功安装了 PyTorch 的 GPU 版本,但运行 torch.cuda.is_available() 返回 False,并且执行 nvidia-smi 显示 “No devices were found”。

本文将复现该问题的典型场景,并提供清晰的解决步骤,帮助你顺利使用 GPU 加速训练任务。


💥 问题复现

在创建 GPU 类型的 Jupyter 容器时,CubeStudio 需要你手动输入 GPU 资源使用限制。平台的输入框提示如下:

gpu的资源使用限制(单位卡),示例: 1,2。
训练任务每个容器独占整卡。申请具体的卡型号,可以类似 1(V100)。

很多用户容易误解这段描述,例如将 1,2 理解为「申请两个 GPU」,但实际上 该平台并不接受中英文逗号分隔的 GPU ID 列表格式

错误输入示例:

1,2

造成的后果是:

  • Jupyter 容器虽然正常启动;

  • 但容器内部 nvidia-smi 返回 No devices were found

  • torch.cuda.is_available() 永远为 False

  • 实际未成功分配 GPU。


✅ 正确输入方式

平台需要你指定 单卡 GPU 数量卡类型(可选),示例如下:

2

或(若支持类型指定):

2(V100)

这代表你申请 2 张 GPU 卡,或明确申请 2 张 V100 卡


🔧 解决步骤回顾

1. 确认 PyTorch 为 GPU 版本

使用命令安装 PyTorch CUDA 11.8 版本:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

并在 Python 中验证:

import torch
print("torch version:", torch.__version__)
print("CUDA built:", torch.backends.cuda.is_built())
print("CUDA available:", torch.cuda.is_available())
print("CUDA version:", torch.version.cuda)

如果 torch.cuda.is_available()False,请继续查看下一步。


2. 运行 nvidia-smi 检查显卡是否挂载

nvidia-smi

如输出:

No devices were found

说明 容器未正确挂载 GPU


3. 修正 CubeStudio 的 GPU 配置参数

在重新创建 Jupyter 容器时:

  • 清空之前的输入 1,2

  • 改为只输入数字,如 2

  • 然后点击启动。

容器创建完成后,重新进入 Notebook,运行以下命令验证:

!nvidia-smi

如果显示正确的 GPU 型号、驱动版本和进程信息,说明问题已经解决。

此时:

torch.cuda.is_available()  # 应返回 True

🎯 总结

问题项描述
错误输入1,2(逗号格式导致平台无法识别 GPU 申请)
正确输入22(V100)
表现症状PyTorch 报告无 GPU,nvidia-smi 显示无设备
解决方式重设容器,正确输入数字格式后重新申请 GPU

🔚 结语

在云端平台进行 AI 开发时,显卡资源往往是关键。CubeStudio 提供了灵活的 GPU 分配机制,但对输入格式的要求较为严格。希望本文能够帮助你快速定位类似问题,顺利构建基于 GPU 的训练环境。

如需进一步了解 PyTorch GPU 使用、CUDA 驱动或 Docker 容器 GPU 挂载等内容,欢迎留言探讨!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值