题目:求最大公约数和最小公倍数
输入正整数 m n
求最大公约数和最小公倍数
输入
15
9
输出
3
45
思路:
辗转相除法, 又名欧几里德算法(Euclidean algorithm),是求最大公约数的一种方法。它的具体做法是:
用较小数除较大数,
再用出现的余数(第一余数)去除除数,
再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。
如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
对于程序里交换的部分一定要画图。
yushu=chushu % beichushu
4 100 22
2 22 4
0 4 2
可以看到被除数赋给除数,余数赋给被除数。一直到余数=0结束。
一旦余数=0 就输出 被除数(最大公约数)
最小公倍数,即是 两数相乘除以最大公约数的值
代码:
def getgys(num1,num2):
if num1<num2:
num1,num2=num2,num1
ynum=num1%num2
while r!=0:
num1=num2
num2=ynum
ynum=num1%num2
return int(num2)
def getgbs(num1,num2,h):
print(int(num1*num2/h))
m=int(input())
n=int(input())
print(getgys(m,n))
getgbs(m,n,getgys(m,n))