途家2019校招笔试 1 求最大公约数和最小公倍数

题目:求最大公约数和最小公倍数
输入正整数 m n
求最大公约数和最小公倍数
输入

15
9

输出

3
45

思路:
辗转相除法, 又名欧几里德算法(Euclidean algorithm),是求最大公约数的一种方法。它的具体做法是:
用较小数除较大数,
再用出现的余数(第一余数)去除除数,
再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。
如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数
对于程序里交换的部分一定要画图。
yushu=chushu % beichushu
4 100 22
2 22 4
0 4 2
可以看到被除数赋给除数,余数赋给被除数。一直到余数=0结束。
一旦余数=0 就输出 被除数(最大公约数)
最小公倍数,即是 两数相乘除以最大公约数的值
代码:

def getgys(num1,num2):
    if num1<num2:
        num1,num2=num2,num1
    ynum=num1%num2
    while r!=0:
        num1=num2
        num2=ynum
        ynum=num1%num2
    return int(num2)
def getgbs(num1,num2,h):
    print(int(num1*num2/h))
m=int(input())
n=int(input())
print(getgys(m,n))
getgbs(m,n,getgys(m,n))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值