牛牛的最大公约数

题目:

https://ac.nowcoder.com/acm/problem/21546
牛牛有一个区间 [ L , R ] [L,R] [L,R],需要选择 N N N个数,这 N N N个数都在这个区间范围内,那么我们知道一共有 ( R − L + 1 ) N (R - L + 1) ^ N (RL+1)N种选法,假如我们想要这 N N N个数的最大公约数恰好是 K K K.请问一共有多少种选法,输出答案对 1 0 9 + 7 10^9+7 109+7取模.
N , K , L , R ( 1 ≤ N , K , L ≤ 1 0 9 , L ≤ R ≤ 1 0 9 ) 0 ≤ R − L ≤ 1 0 5 N,K,L,R (1\le N, K, L\le10^9, L\le R\le10^9)\quad0\le R-L\le10^5 N,K,L,R(1N,K,L109,LR109)0RL105

思路:
∑ i 1 = l r . . . ∑ i n = l r [ ( i 1 . . . . i n ) = k ] = ∑ i 1 = ⌈ l k ⌉ ⌊ r k ⌋ . . . ∑ i n = ⌈ l k ⌉ ⌊ r k ⌋ [ ( i 1 . . . . i n ) = 1 ] 令 l = ⌈ l k ⌉ , r = ⌊ r k ⌋ = ∑ i 1 = l r . . . ∑ i n = l r [ ( i 1 . . . . i n ) = 1 ] = ∑ i 1 = l r . . . ∑ i n = l r ∑ d ∣ ( i 1 . . . i 2 ) μ ( d ) = ∑ d = 1 r ∑ i 1 = l r . . . ∑ i n = l r [ d ∣ ( i 1 . . . i n ) ] μ ( d ) = ∑ d = 1 r μ ( d ) ∑ i 1 = l r [ d ∣ i 1 ] . . . ∑ i n = l r [ d ∣ i n ] 只 要 另 i j 是 d 的 倍 数 就 满 足 d ∣ ( i 1 . . . i n ) = ∑ d = 1 r μ ( d ) ( ⌊ r d ⌋ − ⌊ l − 1 d ⌋ ) n 分 块 + 杜 教 筛 \begin{aligned} &\sum_{i_1=l}^{r}...\sum_{i_n=l}^{r}[(i_1....i_n)=k]\\ =&\sum_{i_1=\lceil \frac{l}{k} \rceil}^{\lfloor \frac{r}{k} \rfloor}...\sum_{i_n=\lceil \frac{l}{k} \rceil}^{\lfloor \frac{r}{k} \rfloor}[(i_1....i_n)=1]\quad 令l=\lceil \frac{l}{k} \rceil,r=\lfloor \frac{r}{k} \rfloor\\ =&\sum_{i_1=l}^{r}...\sum_{i_n=l}^{r}[(i_1....i_n)=1]\\ =&\sum_{i_1=l}^{r}...\sum_{i_n=l}^{r}\sum_{d|(i_1...i_2)}\mu(d)\\ =&\sum_{d=1}^{r}\sum_{i_1=l}^{r}...\sum_{i_n=l}^{r}[d|(i_1...i_n)]\mu(d)\\ =&\sum_{d=1}^{r}\mu(d)\sum_{i_1=l}^{r}[d|i_1]...\sum_{i_n=l}^{r}[d|i_n]\quad 只要另i_j是d的倍数就满足d|(i_1...i_n)\\ =&\sum_{d=1}^{r}\mu(d)(\lfloor \frac{r}{d} \rfloor-\lfloor \frac{l-1}{d} \rfloor)^n\quad分块+杜教筛 \end{aligned} ======i1=lr...in=lr[(i1....in)=k]i1=klkr...in=klkr[(i1....in)=1]l=kl,r=kri1=lr...in=lr[(i1....in)=1]i1=lr...in=lrd(i1...i2)μ(d)d=1ri1=lr...in=lr[d(i1...in)]μ(d)d=1rμ(d)i1=lr[di1]...in=lr[din]ijdd(i1...in)d=1rμ(d)(drdl1)n+
注意
分块时考虑 d > l − 1 d>l-1 d>l1的情况,会除 0 0 0

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,k,l,r;
const ll maxn=1e7;//预处理量
const ll mod=1e9+7;
map<ll,ll> mp_mu;
ll vis[maxn+2],p[maxn],mu[maxn+2],tot=0,mu_sum[maxn+2];
void init(){//预处理
	mu[1]=1;
	for(int i=2;i<=maxn;i++){
		if(!vis[i]) p[++tot]=i,mu[i]=-1;
		for(int j=1;j<=tot&&i*p[j]<=maxn;j++){
			vis[i*p[j]]=1;
			if(i%p[j]==0){
				mu[i*p[j]]=0;
				break;
			}
			mu[i*p[j]]=-mu[i];
		}
	}
}
ll qpow(ll a,ll n){
	ll ans=1;
	while(n){
		if(n&1) ans=(ans*a)%mod;
		a=(a*a)%mod;
		n>>=1;
	}
	return ans;
}
ll getMu(ll x){
	if(x<=maxn) return mu_sum[x];
	if(mp_mu.find(x)!=mp_mu.end()) return mp_mu[x];
	ll res=1ll;
	for(ll i=2,j;i<=x;i=j+1){
		j=x/(x/i);
		res-=getMu(x/i)*(j-i+1);
	}
	return mp_mu[x]=res;
}
ll du(ll L,ll R){//杜教筛
	ll res=0;
	for(int i=1,j;i<=R;i=j+1){
		if(L-1<i) j=R/(R/i);//防止除零意外
		else j=min(R/(R/i),(L-1)/((L-1)/i));//取小的那个:毕竟是分块嘛
		ll x=getMu(j)-getMu(i-1);
		ll y=qpow(R/i-(L-1)/i,n);
		res=(res+(x*y)%mod)%mod;
	}
	res=(res+mod)%mod;//要是正才行
	return res;
} 
int main(){
	int L,R;
	init();
	scanf("%lld%lld%d%d",&n,&k,&L,&R);
	l=(L+k-1)/k;r=R/k;
	for(int i=1;i<=min(r,maxn);i++) mu_sum[i]=mu_sum[i-1]+mu[i];
	ll ans=du(l,r);
	printf("%lld\n",ans);
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值