51Nod 1083 矩阵取数问题


基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题
收藏
关注
一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下向右走,求能够获得的最大价值。
例如:3 * 3的方格。

1 3 3
2 1 3
2 2 1

能够获得的最大价值为:11。
Input

第1行:N,N为矩阵的大小。(2 <= N <= 500)
第2 - N + 1行:每行N个数,中间用空格隔开,对应格子中奖励的价值。(1 <= N[i] <= 10000)

Output

输出能够获得的最大价值。

Input示例

3
1 3 3
2 1 3
2 2 1

Output示例

11

题意:》》》
思路:和机器人走方格问题一样。。。初始值为a[0][0],状态转移方程为dp[i][j]=max(dp[i][j-1],dp[i-1][j])+a[i][j];

下面附上代码:

#include<bits/stdc++.h>
using namespace std;
const int N=505;
int a[N][N],dp[N][N];
int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
			scanf("%d",&a[i][j]);
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			if(i==1&&j==1) dp[i][j]=a[i][j];
			dp[i][j]=max(dp[i][j-1],dp[i-1][j])+a[i][j];
		}
	}
	printf("%d\n",dp[n][n]);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值