基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题
收藏
关注
一个N*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,从左上走到右下,只能向下向右走,求能够获得的最大价值。
例如:3 * 3的方格。
1 3 3
2 1 3
2 2 1
能够获得的最大价值为:11。
Input
第1行:N,N为矩阵的大小。(2 <= N <= 500)
第2 - N + 1行:每行N个数,中间用空格隔开,对应格子中奖励的价值。(1 <= N[i] <= 10000)
Output
输出能够获得的最大价值。
Input示例
3
1 3 3
2 1 3
2 2 1
Output示例
11
题意:》》》
思路:和机器人走方格问题一样。。。初始值为a[0][0],状态转移方程为dp[i][j]=max(dp[i][j-1],dp[i-1][j])+a[i][j];
下面附上代码:
#include<bits/stdc++.h>
using namespace std;
const int N=505;
int a[N][N],dp[N][N];
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==1&&j==1) dp[i][j]=a[i][j];
dp[i][j]=max(dp[i][j-1],dp[i-1][j])+a[i][j];
}
}
printf("%d\n",dp[n][n]);
return 0;
}