矩阵取数问题 V2 [三维dp]

一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,先从左上走到右下,再从右下走到左上。第1遍时只能向下和向右走,第2遍时只能向上和向左走。两次如果经过同一个格子,则该格子的奖励只计算一次,求能够获得的最大价值。

例如:3 * 3的方格。

1 3 3
2 1 3
2 2 1

能够获得的最大价值为:17。1 -> 3 -> 3 -> 3 -> 1 -> 2 -> 2 -> 2 -> 1。其中起点和终点的奖励只计算1次。
Input
第1行:2个数M N,中间用空格分隔,为矩阵的大小。(2 <= M, N <= 200)
第2 - N + 1行:每行M个数,中间用空格隔开,对应格子中奖励的价值。(1 <= Ai,ji,j <= 10000)
Output
输出能够获得的最大价值。
Sample Input
3 3
1 3 3
2 1 3
2 2 1
Sample Output
17
如果是只走一次, 就是从左上走到右下但是不再回去的话就是一个简单的二维dp。但是题目要求我们要走回去,这个时候可以看成是两个人一起从左上到右下。这样动态规划方程就是dp[x1][y1][x2][y2]。然后因为这两个人每次走的都是一步。方程可以 降维为 dp[step][x1][x2]。这时候方程的意思就是截至在step步时在一个人在x1,一个人在x2位置的最大值。

#include <bits/stdc++.h>

using namespace std;

const int MAXN =205;
int a[MAXN][MAXN];
int dp[405][MAXN][MAXN];
int m, n;

int main() {
    while (scanf ("%d %d", &m, &n) != EOF) {
        for (int i = 1; i <= n; i++) 
            for (int j = 1; j <= m; j++)
                scanf ("%d", &a[i][j]);
        memset(dp, 0, sizeof(dp));
        for (int s = 2; s <= m + n; ++s) {
            for (int x1 = 1; x1 <= n && s - x1 > 0; ++x1) {
                for (int x2 = 1; x2 <= n && s - x2 > 0; ++x2) {
                    int y1 = s - x1;
                    int y2 = s - x2;
                    dp[s][x1][x2] = max(max(dp[s-1][x1][x2], dp[s-1][x1-1][x2]),
                     max(dp[s-1][x1][x2-1], dp[s-1][x1-1][x2-1])) + 
                     ((x1 == x2) ? a[x1][y1] : a[x1][y1] + a[x2][y2]);
                }
            }
        } 
        cout << dp[m+n][n][n] << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值