一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,先从左上走到右下,再从右下走到左上。第1遍时只能向下和向右走,第2遍时只能向上和向左走。两次如果经过同一个格子,则该格子的奖励只计算一次,求能够获得的最大价值。
例如:3 * 3的方格。
1 3 3
2 1 3
2 2 1
能够获得的最大价值为:17。1 -> 3 -> 3 -> 3 -> 1 -> 2 -> 2 -> 2 -> 1。其中起点和终点的奖励只计算1次。
Input
第1行:2个数M N,中间用空格分隔,为矩阵的大小。(2 <= M, N <= 200)
第2 - N + 1行:每行M个数,中间用空格隔开,对应格子中奖励的价值。(1 <= Ai,ji,j <= 10000)
Output
输出能够获得的最大价值。
Sample Input
3 3
1 3 3
2 1 3
2 2 1
Sample Output
17
如果是只走一次, 就是从左上走到右下但是不再回去的话就是一个简单的二维dp。但是题目要求我们要走回去,这个时候可以看成是两个人一起从左上到右下。这样动态规划方程就是dp[x1][y1][x2][y2]。然后因为这两个人每次走的都是一步。方程可以 降维为 dp[step][x1][x2]。这时候方程的意思就是截至在step步时在一个人在x1,一个人在x2位置的最大值。
#include <bits/stdc++.h>
using namespace std;
const int MAXN =205;
int a[MAXN][MAXN];
int dp[405][MAXN][MAXN];
int m, n;
int main() {
while (scanf ("%d %d", &m, &n) != EOF) {
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
scanf ("%d", &a[i][j]);
memset(dp, 0, sizeof(dp));
for (int s = 2; s <= m + n; ++s) {
for (int x1 = 1; x1 <= n && s - x1 > 0; ++x1) {
for (int x2 = 1; x2 <= n && s - x2 > 0; ++x2) {
int y1 = s - x1;
int y2 = s - x2;
dp[s][x1][x2] = max(max(dp[s-1][x1][x2], dp[s-1][x1-1][x2]),
max(dp[s-1][x1][x2-1], dp[s-1][x1-1][x2-1])) +
((x1 == x2) ? a[x1][y1] : a[x1][y1] + a[x2][y2]);
}
}
}
cout << dp[m+n][n][n] << endl;
}
return 0;
}