算法的时间复杂度和空间复杂度

一、算法效率

1.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:

long long Fib(int N)
{
	if(N < 3)
	return 1;
	return Fib(N-1) + Fib(N-2);
}

斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?
简洁对于代码的维护和调试有一定的优势,但是在选择实现方式时,我们还需要考虑其他因素,比如性能、可读性、健壮性等。
对于斐波那契数列的递归实现方式,其简洁性可能会使其易于理解和实现,但是在计算较大的斐波那契数时,递归深度会很大,容易导致栈溢出的问题。此外,由于每次递归都需要创建新的函数调用堆栈,其时间复杂度也会退化为O(2^n)。
因此,虽然递归实现方式非常简洁,但在实际应用中可能存在性能和可靠性的问题。相反,一些更加复杂的实现方式(如迭代法)可能更加高效和可靠。
所以,我们需要综合考虑多个因素来衡量一个算法的好与坏,包括简洁性、性能、可读性、健壮性等。在选择实现方式时,我们可以根据实际需求来权衡这些因素,以达到最优的效果。

1.2 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

二、时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
	int count = 0;
for (int i = 0; i < N ; ++ i)
{
	for (int j = 0; j < N ; ++ j)
	{
		++count;
	}
}
for (int k = 0; k < 2 * N ; ++ k)
{
	++count;
}
int M = 10;
while (M--)
{
	++count;
}
	printf("%d\n", count);
}

Func1 执行的基本操作次数 :
在这里插入图片描述
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

2.2 大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号
推导大O阶方法
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:O(N2)
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)。

2.3常见时间复杂度计算举例

实例1:

// 计算Func2的时间复杂度?
void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N ; ++ k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)
实例2:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++ k)
	{
		++count;
	}
	for (int k = 0; k < N ; ++ k)
	{
		++count;
	}
	printf("%d\n", count);
}

实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)

实例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++ k)
	{
		++count;
	}
	printf("%d\n", count);
}

实例3基本操作执行了100次,通过推导大O阶方法,时间复杂度为 O(1)
注意:这里O(1)代表的不是一次,而是常数次

实例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

实例4基本操作执行跟character的位置有关如果在最开始位置,则是最好情况1次;如果character在最后的位置,则是最坏情况N次,时间复杂度一般看最坏,时间复杂度为 O(N)。

实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i-1] > a[i])
			{
				Swap(&a[i-1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
		break;
	}
}

最好情况:第一遍比较就是有序,这种情况exchange不改变,直接跳出循环,比较了N-1次,时间复杂度O(N^2)。
最坏情况:每次循环都需要比较完,此时依次比较N-1,N-2,N-3,…,3,2,1,为等差数列,执行了(N*(N+1)/2次,时间复杂度为 O(N^2)。
注意:如果没有设置exchange记录,最好和最坏都是O(N^2)。
实例5基本操作执行最好N次,最坏执行了(N*(N+1)/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)。

实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = n-1;
	// [begin, end]:begin和end是左闭右闭区间,因此有=号
	while (begin <= end)
	{
		int mid = begin + ((end-begin)>>1);
		if (a[mid] < x)
		begin = mid+1;
		else if (a[mid] > x)
		end = mid-1;
		else
		return mid;
	}
	return -1;
}

最好情况:第一次折半查找mid就等于x
最坏情况:区间缩放到一个值的时候,要么找到,要么找不到。
假设N是数组的个数,x是查找的最坏次数:
N/2/2/2/2…/2=1
折半查找多少次就除多少次2,2x=N, X=log2N.
实例6基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。

实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
	if(0 == N)
	return 1;
	return Fac(N-1)*N;
}

实例7通过计算分析发现基本操作递归了N次,时间复杂度为O(N)。

实例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
	if(N < 3)
	return 1;
	return Fib(N-1) + Fib(N-2);
}

实例8通过计算分析发现基本操作递归了2^ N次,时间复杂度为O(2^N)。
在这里插入图片描述

由上图递归栈帧的二叉树可以看出是等比数列,缺失的部分是常数。

三、空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i-1] > a[i])
			{
			Swap(&a[i-1], &a[i]);
			exchange = 1;
			}
		}
		if (exchange == 0)
		break;
	}
}

实例1创建了end,i,exchange三个变量,使用了常数个额外空间,所以空间复杂度为 O(1)。

实例2:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
	if(n==0)
	return NULL;
	long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n ; ++i)
	{
		fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
	}
	return fibArray;
}

实例2创建了i一个变量,动态开辟了N+1个空间,所以空间复杂度为 O(N)。

实例3:(重要)

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
	if(N == 0)
		return 1;
		
	return Fac(N-1)*N;
}

实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)。
为什么实例3是O(N)?
在这里插入图片描述
运行结果:在这里插入图片描述
这里F1()调用完空间就会释放,将权限还给操作系统,然后再调用F2(),由于b和a的大小都一样,所以系统将他们使用了同一块空间。
而函数栈帧是下面这种情况
在这里插入图片描述
运行结果:
在这里插入图片描述
这种情况是main()函数先调用F1(),然后F1()在调用F2()
在这里插入图片描述
所用每次都会重新开辟一块空间,所以实例3的时间复杂度是O(N)。

实例8:(重要)

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
	if(N < 3)
	return 1;
	return Fib(N-1) + Fib(N-2);
}

斐波那契递归Fib的时间复杂度为O(N)
在这里插入图片描述
如上图所示:菲波那切数列在建立栈帧时候是先往下走,如Fib(N)先调用Fib(N-1)然后调用Fib(N-2)一直到Fib(2),这时候会释放Fib(2)的空间,然后再调用Fib(1),也就是说,Fib(2)和Fib(1)使用的是同一块空间,同理Fib(N-1)和Fib(N-2)使用的也是同一块空间。由此可见,该函数的空间复杂度为O(N)。

四、常见复杂度对比

一般算法常见的复杂度如下:
在这里插入图片描述
在这里插入图片描述

五、复杂度的oj练习

消失的数字OJ链接:
https://leetcodecn.com/problems/missing-number-lcci/

// int missingNumber(int* nums, int numsSize){
//     int ret=0;
//     //相同数字异或两次会抵消
//     //第一步,先将nums数组的元素进行异或
//     for(int i=0;i<numsSize;i++)
//     {
//         ret^=nums[i];
//     }
//     //第二步,再将0到n的所有整数进行异或
//     for(int i=0;i<numsSize+1;i++)
//     {
//         ret^=i;
//     }
//     return ret;
// }
int missingNumber(int* nums, int numsSize){
    int sum=numsSize*(numsSize+1)/2;//因为求和0除去,所以只需要计算1~n的和即可,所以这里用的是numsize
    for(int i=0;i<numsSize;i++)
    {
        sum-=nums[i];
    }
    return sum;
}

解法一利用俩个相同的数字异或之后的结果为0,需要注意的是在进行0到n之间所有整数进行异或的时候,需要在i的循环条件上改为i<numsSize+1,因为多了一个数字。
解法二是利用等差数列求和公式,将0~n之间的整数进行求和,再减去nums数组之间的元素,就可以得到确实的数字。

旋转数组OJ链接:
https://leetcode-cn.com/problems/rotate-array/

/*
解题思路:使用三次逆转法,让数组旋转k次
1. 先整体逆转
2. 逆转子数组[0, k - 1]
3. 逆转子数组[k, size - 1]
*/
void reverse(int* nums, int begin, int end)
{
    while(begin < end)
    {
        int tmp = nums[begin];
        nums[begin] = nums[end];
        nums[end] = tmp;

        ++begin;
        --end;
    }
}

// 三趟逆置倒的思路
void rotate(int* nums, int numsSize, int k){
    if(k > numsSize)
    {
        k %= numsSize;
    }
    
    reverse(nums, 0, numsSize-1);
    reverse(nums, 0, k-1);
    reverse(nums, k, numsSize-1);
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值