机器学习能解决什么问题?机器学习用途

机器学习是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习能解决什么问题?本篇来分析一下机器学习的用途。

机器学习能解决什么问题?

从功能的角度分类,机器学习在一定量级的数据上,可以解决下列问题:

1、分类问题:根据数据样本上抽取出的特征,判定其属于有限个类别中的哪一个。比如:垃圾邮件识别(结果类别:1、垃圾邮件 2、正常邮件)。

2、回归问题:根据数据样本上抽取出的特征,预测一个连续值的结果。比如:星爷《美人鱼》票房

3、聚类问题:根据数据样本上抽取出的特征,让样本抱抱团(相近/相关的样本在一团内)。比如:google的新闻分类。

我们再把上述常见问题划到机器学习最典型的2个分类上。

分类与回归问题需要用已知结果的数据做训练,属于“监督学习”

聚类的问题不需要已知标签,属于“非监督学习”。

如果在IT行业(尤其是互联网)里溜达一圈,你会发现机器学习在以下热点问题中有广泛应用:

免费分享一些我整理的人工智能学习资料给大家,包括一些AI常用框架实战视频、图像识别、OpenCV、机器学习、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文、行业报告等。

为了更好的系统学习AI,推荐大家收藏一份。

下面是部分截图,点击文末名片关注我的公众号【AI技术星球】发送暗号 321 领取(一定要发暗号 321)

一、人工智能课程及项目【含课件源码】

二、国内外知名精华资源

三、人工智能论文合集

四、人工智能行业报告

学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。

点击下方名片,扫码关注公众号【AI技术星球】发送暗号 321 免费领取文中资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值