LeetCode之盛最多水的容器(14)
0.说在前面1.问题2.思路算法3.作者的话
0.说在前面
又到了周二,我们常规操作,leetcode刷题,本次刷题题目为盛最多水的容器。
下面我们一起来分析这道题的思路与算法!
1.问题
给定 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
2.思路算法
思路一:暴力法
直接暴力解决这道题。
这道题其实思路很简单,很简单,暴力法,真的so easy,直接遍历双重循环,O(n^2)时间复杂度,循环中更新最大面积就可以了。
这里运用到了木桶的短板原理!
实现
class Solution:
def maxArea(self, height):
maxArea = 0
for i in range(1,len(height)+1):
for j in range(i,len(height)+1):
currentArea = (j-i)*min(height[i-1],height[j-1])
if currentArea>maxArea:
maxArea = currentArea
return maxArea
可惜超时!该方法放弃!
思路二:双指针法
我们知道当宽度最大,高度最大也就是面积最大,直接为最优解,所以这里从两边定义位置,逐渐逼近,直到选择最优的面积!
选择最优面积策略是,当左边比右边高度小,则更新左边,否则更新右边,这样遍历保证了可以使得面积最大被找出来!
实现
时间复杂度O(n),空间复杂度O(1)
class Solution:
def maxArea(self, height):
maxArea=0
low = 0
high = len(height)-1
while low<high:
currentArea = (high - low) * min(height[high], height[low])
if currentArea > maxArea:
maxArea = currentArea
if height[high]>height[low]:
low+=1
else:
high-=1
return maxArea
提交结果
思路三:思路二优化
这个算法是对上述算法二的优化,优化策略在于移动次数!
这里的移动次数是按照如下方法来进行:
(1)首先跟做左右两端点,计算出初始面积,然后判断左右端点所对应的高度。
(2)左边高情况:则根据左端点是否小于右端点进入循环,因为此时左边高,我们得不断调整右端点,当我们调整右端点时,我们寻找右端点比之前的原始右端点对应的高度大,则说明更新有意义了,然后更新为右端点的当前高度,判定是否高于左端点对应高度,如果高于左端点对应高度,则进入(3)。
(3)右边高情况:还是根据左端点是否小于右端点进入循环,因为此时右边高,我们得不断调整左端点,当我们调整左端点时,我们寻找左端点比之前的原始左端点对应的高度大,则说明更新有意义了,然后更新为左端点的当前高度,判定是否高于右端点对应高度,如果高于右端点对应高度,则进入(2)。
(4)循环判断左端点是否小于右端点,是则重复上述操作,否则退出循环,返回最大面积!
实现
时间复杂度为O(n),空间复杂度为O(1),这里解释一下时间复杂度为何为O(n),我们第一眼看上去有两个循环,想到了O(n^2),但是你有没有仔细观察,内部的循环是影响外层循环,我们按照最坏情况,当左右两端点直接为最优解时,我们相当于不断在更新左边或者右边某一端点的位置,直到最终左右两端点位置一致,循环结束,实质最多对循环的每个元素遍历一次而已!
好好理解一下这里的时间复杂度,确实比上述算法要优一点!
class Solution(object):
def maxArea(self, height):
# 最左边
m1 = height[0]
# 最右边
m2 = height[-1]
left = 0
right = len(height) - 1
# 根据左右断点,计算一次面积
ans = min(height[right], height[left]) * (right - left)
# 左边比右边小进入循环
while left < right:
# m1与m2存储的是高度!比较高度大小
# 左边高
if m1 >= m2:
# 循环条件
while right > left:
# 找到比右边高度大的右边位置
if height[right] > m2:
# 更新右边大高度m2
m2 = height[right]
# 更新最大面积
ans = max(min(height[right], height[left]) * (right - left), ans)
# 判断左右高度
if m2 > m1: break
right -= 1
# 右边高
else:
while right > left:
if height[left] > m1:
m1 = height[left]
ans = max(min(height[right], height[left]) * (right - left), ans)
if m1 >= m2: break
left += 1
return ans
提交结果
参考来源于:
3.作者的话
最后,您如果觉得本公众号对您有帮助,欢迎您多多支持,转发,谢谢!
更多内容,请关注本公众号算法系列!
我今天才知道,我之所以漂泊就是在向你靠近。
--《廊桥遗梦》