权重衰减与L2正则化

上⼀节中我们观察了过拟合现象,即模型的训练误差远小于它在测试集上的误差。虽然增⼤训练
数据集可能会减轻过拟合,但是获取额外的训练数据往往代价⾼昂。本节介绍应对过拟合问题的
常⽤⽅法:权重衰减(weight decay)。

权重衰减等价于L2 范数正则化(regularization)。正则化通过为模型损失函数添加惩罚项使得
学出的模型参数值较小,是应对过拟合的常⽤⼿段。我们先描述L2 范数正则化,再解释它为何
⼜称权重衰减。
L2 范数正则化在模型原损失函数基础上添加L2 范数惩罚项,从而得到训练所需要最小化的函
数。L2 范数惩罚项指的是模型权重参数每个元素的平⽅和与⼀个正的常数的乘积。以“线性回
归”⼀节中的线性回归损失函数

$$ \ell(w_1, w_2, b) = \frac{1}{n} \sum_{i=1}^n \frac{1}{2}\left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right)^2 $$

为例,其中w1;w2 是权重参数,b 是偏差参数,样本i 的输⼊为x(i)
1 ; x(i)
2 ,标签为y(i),样本数为
n。将权重参数⽤向量w = [w1;w2] 表⽰,带有L2 范数惩罚项的新损失函数为

$$\ell(w_1, w_2, b) + \frac{\lambda}{2n} \|\boldsymbol{w}\|^2,$$

其中超参数 > 0。当权重参数均为0 时,惩罚项最小。当 较⼤时,惩罚项在损失函数中的⽐
重较⼤,这通常会使学到的权重参数的元素较接近0。当 设为0 时,惩罚项完全不起作⽤。上
式中L2 范数平⽅∥w∥2 展开后得到w2
1 + w2
2。有了L2 范数惩罚项后,在小批量随机梯度下降中,

我们将“线性回归”⼀节中权重w1 和w2 的迭代⽅式更改为
$$ \begin{aligned} w_1 &\leftarrow \left(1- \frac{\eta\lambda}{|\mathcal{B}|} \right)w_1 - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}}x_1^{(i)} \left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right),\\ w_2 &\leftarrow \left(1- \frac{\eta\lambda}{|\mathcal{B}|} \right)w_2 - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}}x_2^{(i)} \left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right). \end{aligned} $$
可⻅,L2 范数正则化令权重w1 和w2 先⾃乘小于1 的数,再减去不含惩罚项的梯度。因此,L2
范数正则化⼜叫权重衰减。权重衰减通过惩罚绝对值较⼤的模型参数为需要学习的模型增加了限
制,这可能对过拟合有效。实际场景中,我们有时也在惩罚项中添加偏差元素的平⽅和。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值