简介
💡 这几个模型都是KG表示的经典模型,关于如何对三元组建模Embedding。以下第一个表格是关于各类建模方法中,关系是否能满足一些特性进行的汇总。
对称性:例如朋友关系。如果有h(r , t),一定有h(t , r);
反对称性:例如购买关系与出售关系。如果有h1(r, t) ,一定有h2(t ,r); 【h1和 h2是相反方向的一对向量】
传递性:例如亲属关系,父亲的父亲是爷爷。如果有h1(r , t) 和h2(t, y),一定有h3(r , y)
一对N:例如教学关系,一个老师可能教很多学生。
模型名称\能满足边的特性 | 对称性 | 反对称性 | 传递性 | 一对N |
---|---|---|---|---|
TransE | × | √ | √ | × |
TransR | √ | √ | √ | √ |
ComplEX | √ | √ | × | √ |
ConvKB | √ | √ | √ | √ |
详细解释
TransE
基础假设:(h , r , t)三元组如果为真,有:h + r ≈ t;如果为假,有:h + r ≠ t
损失函数:f =