做图的人是如何看待GNN的(一):feature 提取

目录

一、概述

二、node-level feature

1、degree

2、节点重要程度

3、结构性feature

1、基于distance

2、基于局部邻居特征

3、基于全局邻居特征

四、graph-level feature       

1、基于GraphLet

2、基于WL(着色法)


一、概述

        如果说神经网络是把定向输入经过黑盒变换,转化为定向输出,例如CNN是把图像转化为标签(物体识别与检测)、RNN把提取好的文本转化为标签/概率(NER/分类),那图神经网络就是把图转为标签。

        图卷积神经网络的输出,依照组成图的元素,可以分为:node-level、link-level、graph-level。node-level的任务,主要对节点进行分类,例如,找节点的label。link-level的任务是对边进行预测,例如,删去静态图的一些边,而后对删除的边进行预测;或者,预测根据时间变化的动态图的边的出现。graph-level的任务,一般是对整个图的性质进行预测。

        但区别于CNN和RNN的输入,图这种结构非常复杂。CNN的本质是要对grid进行操作,这个grid可以看成一个二维矩阵,这种欧氏空间数据的卷积核也好找,直接用一个m*n的矩阵平移就足够。RNN是要对序列化的一个一维数据,每个点可以“看到”前后的部分数据,它的卷积也就只有【前】和【后】两个方向。图的每个点,其度是高度不确定的,也就不满足欧氏空间数据,更无法像RNN一样只有有限的几个方向。因此,对图进行卷积,需要转换的东西很多。           

        此外,参照神经网络,图神经网络的输入的特征需要经过提取。本文,将主要阐述各种的特征提取。

二、node-level feature

1、degree

        度是衡量一个节点的最基础信息。如果用度作为提取的feature,就会面临以下问题:

        如果一个图里,两个点的度相同,那么如何区分这两个节点呢?

2、节点重要程度

        节点重要程度可以有以下3个指标判断:

        Eigenvector centrality:特征向量中心性。该中心线的假设前提是,每个点的重要程度由邻居节点的重要性决定。例如PageRank。每个centrality的参照见下公式。

  C_{v}=\frac{1}{\lambda }\sum_{u\in N(v)}C_{u}

       考虑到计算情况,整个公式见下面。其中A是邻接矩阵,c是特征向量,lamda是特征值。

\lambda c = Ac

        Bewteenness centrality:找sssp上的重合点。例如,下图中A和B和E的centrality都是0,而C和D都是3。betweenness越大,越重要。

        

        Closeness centrality:找该点为起点的sssp的和的倒数,越大越重要。例如上图中A点的centrality = 1/(2+1+2+3) = 1/8。个人认为,Closeness在较大的图例一定要取对数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值