[续上篇] 改进的图片验证码

上次开发出图片验证码之后(上篇文章),根据一些朋友的建议,本着验证码易识别(针对人),不易破解,美观的原则,改进了验证码生成的算法,采用图像滤镜的方法,对图片验证码进行反破解干扰,结果图片示例如下:


滤镜效果主要采用波形(wave)算法,通过对X轴Y轴的正弦波形处理,产生叠加效果。算法主要描述如下:

  private const double PI = 3.1415926535897932384626433832795;
  private const double PI2 = 6.283185307179586476925286766559;

  /// <summary>
  /// 正弦曲线Wave扭曲图片
  /// </summary>
  /// <param name="srcBmp"></param>
  /// <param name="bXDir"></param>
  /// <param name="nMultValue">波形的幅度倍数</param>
  /// <param name="dPhase">波形的起始相位,取值区间[0-2*PI)</param>
  /// <returns></returns>
  public System.Drawing.Bitmap TwistImage(Bitmap srcBmp,bool bXDir,double dMultValue,double dPhase)
  {
   System.Drawing.Bitmap destBmp = new Bitmap(srcBmp.Width,srcBmp.Height);

   // 将位图背景填充为白色
   System.Drawing.Graphics graph = System.Drawing.Graphics.FromImage(destBmp);
   graph.FillRectangle(new SolidBrush(System.Drawing.Color.White),0,0,destBmp.Width,destBmp.Height);
   graph.Dispose();
  
   double dBaseAxisLen = bXDir ? (double)destBmp.Height : (double)destBmp.Width;

   for(int i=0;i<destBmp.Width;i++)
   {
    for(int j=0;j<destBmp.Height;j++)
    {
     double dx = 0;
     dx = bXDir ? (PI2*(double)j)/dBaseAxisLen : (PI2*(double)i)/dBaseAxisLen;
     dx += dPhase;
     double dy = Math.Sin(dx);

     // 取得当前点的颜色
     int nOldX = 0,nOldY = 0;
     nOldX = bXDir ? i + (int)(dy*dMultValue) : i;
     nOldY = bXDir ? j : j + (int)(dy*dMultValue);

     System.Drawing.Color color = srcBmp.GetPixel(i,j);
     if(nOldX >= 0 && nOldX < destBmp.Width
      && nOldY >=0 && nOldY < destBmp.Height)
     {
      destBmp.SetPixel(nOldX,nOldY,color);
     }
    }
   }

   return destBmp;
  }

开头的示例图片,是两次波形效果的叠加,两次效果分别针对X轴方向和Y轴方向,如果取消对边缘背景色的填充,可以看到算法对图形的影响,如下图:



这样产生的验证码,看起来很像Google站点上的验证码吧,当然,如果你有兴趣,还可以添加其他的滤镜效果,如拉伸,旋转,马赛克等。但是注意一点,网站验证码不是越复杂越好,要在速度和安全上找到一个平衡点。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值