Digest
二维凸包模板题
Description
https://www.luogu.com.cn/problem/P3829
Solution
常规思路
画图易得:若以各信用卡圆滑处理后每个顶角处圆的圆心构成一个点集 S S S,那么答案应为 S S S的凸包周长加上凸包每一个顶点的圆弧的长度之和。
问题来了:凸包每一个顶点的圆弧的长度怎么求?
显然此问题等价于求任一凸包上点所对应的圆弧的圆心角。设以凸包上某点 A A A为起点、终点为与 A A A相邻的凸包上点 B , C B,C B,C的向量 A B ⃗ , A C ⃗ \vec{AB},\vec{AC} AB,AC, θ = c o s < A B ⃗ , A C ⃗ > \theta=cos<\vec{AB},\vec{AC}> θ=cos<AB,AC>,那么画图可求得:点 A A A对应圆弧的圆心角 α = π − θ \alpha=\pi-\theta α=π−θ。
更简单的做法
其实,再画一个完整的凸包并手玩求解不难发现如下结论:答案等于 S S S的凸包的周长加上一个用于圆滑处理的圆的周长。
总结
1、做计算几何的题一定要画图,而且不要画“粗制滥造”的图,否则精度不高影响做题;
2、好好读题很重要,否则连输入与输出格式的要求细节都能忽略一大片。
Code
#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
#define ri register int
using namespace std;
const int MAXN=40020;
const double PI=3.141592653589793;
struct Point{
double x,y;
Point(double x=0,double y=0):x(x),y(y){}
}pts[MAXN];
typedef Point Vector;
typedef vector<Point> Polygon;
int ni,n,tot=2,cnt;
double ai,bi,r,c,xi,yi,theta,ans;
Polygon C;
const double eps=1e-8;
bool dcmp(double x,double y){
return fabs(x-y)<=eps;
}
bool operator <(const Point &a,const Point &b){
return a.x < b.x || (dcmp(a.x, b.x) && a.y < b.y);
}
bool operator ==(const Point &a,const Point &b){
return dcmp(a.x-b.x,0.0)&&dcmp(a.y-b.y,0.0);
}
Vector operator +(Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); }
Vector operator -(Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
Vector Rotate(Vector A,double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); }
double Dot(Vector A,Vector B) { return A.x*B.x+A.y*B.y; }
double Cross(Vector A,Vector B) { return A.x*B.y-A.y*B.x; }
double Norm(Vector A) { return A.x*A.x+A.y*A.y; }
double Length(Vector A) { return sqrt(Norm(A)); }
double Angle(Vector A,Vector B) { return acos(Dot(A,B)/Length(A)/Length(B)); }
void Andrew()
{
C.push_back(Point(0,0));
C.push_back(pts[1]); C.push_back(pts[2]); tot=2;
for(ri i=3;i<=n;++i)
{
while(tot>=2&&Cross(C[tot]-C[tot-1],pts[i]-C[tot])<=0) { C.pop_back(); --tot; }
++tot,C.push_back(pts[i]);
}
C.push_back(pts[n-1]); cnt=++tot;
for(ri i=n-2;i>=1;--i)
{
while(tot>=cnt&&Cross(C[tot]-C[tot-1],pts[i]-C[tot])<=0) { C.pop_back(); --tot; }
++tot,C.push_back(pts[i]);
}
}
void input()
{
scanf("%d%lf%lf%lf",&ni,&bi,&ai,&r);
n=ni*4; c=2.0*PI*r; ai-=2.0*r; bi-=2.0*r;
for(ri i=1;i<=ni;++i)
{
scanf("%lf%lf%lf",&xi,&yi,&theta);
pts[i*4-3].x=ai*0.5; pts[i*4-3].y=bi*0.5;
pts[i*4-3]=Rotate(pts[i*4-3],theta);
pts[i*4-3].x+=xi; pts[i*4-3].y+=yi;
pts[i*4-2].x=(-1)*ai*0.5; pts[i*4-2].y=(-1)*bi*0.5;
pts[i*4-2]=Rotate(pts[i*4-2],theta);
pts[i*4-2].x+=xi; pts[i*4-2].y+=yi;
pts[i*4-1].x=ai*0.5; pts[i*4-1].y=(-1)*bi*0.5;
pts[i*4-1]=Rotate(pts[i*4-1],theta);
pts[i*4-1].x+=xi; pts[i*4-1].y+=yi;
pts[i*4].x=(-1)*ai*0.5; pts[i*4].y=bi*0.5;
pts[i*4]=Rotate(pts[i*4],theta);
pts[i*4].x+=xi; pts[i*4].y+=yi;
}
}
int main()
{
input();
sort(pts+1,pts+n+1);
Andrew();
for(ri i=1;i<tot;++i)
{
ans+=Length(C[i+1]-C[i]);
if(i==1) ans+=c*((PI-Angle(C[1]-C[tot-1],C[1]-C[2]))/(2.0*PI));
else ans+=c*((PI-Angle(C[i]-C[i-1],C[i]-C[i+1]))/(2.0*PI));
//当然,根据上文“更简单的做法”一栏所述,此处ifelse可以不写,直接对最后的ans自加2.0*PI*r即得最终答案
}
printf("%.2lf",ans);
return 0;
}在这里插入代码片