在医学图像处理,尤其是在处理血管断层扫描类(如OCT、IVUS等)图像的过程中,不可避免的会使用到极坐标变换,也即是我们通常所说的“方转圆”。同样,我们可以使用极坐标变换的反变换实现“圆转方”
极坐标变换及其反变换的关键在于,根据极坐标变换前的图像(我们称为“方图”)确定极坐标变换后的图像(我们称为“圆图”)上每个像素点的像素值。也即是找到“圆图”和“方图”间几何坐标的对应关系。
1、极坐标变换(方转圆)
原理:如下图所示,实现极坐标变换的关键即在于找到圆图上任一点P(i,j),在方图上对应的点p(m,n),然后通过插值算法实现圆图上所有像素点的赋值。
方图上,其行列数分别为M、N,方图上的每一列对应为圆图上的每条半径,半径方向存在着一个长度缩放因子delta_r = M/R,圆周方向被分为N等分,即角度因子为delta_t = 2π/N;
圆图上,图像坐标(i,j)和世界坐标(x,y)有着如下变换关系:x = j - R, y = R - i;
那么,图中P点半径长度为r = sqrt(x*x + y*y),角度theta = arctan(y/x);
圆图上点P在方图上对应行数为r/delta_r;
圆图上点P在方图上对应的列数n = thata/delta_t。<