卷积神经网络基本原理

目录

什么是全连接神经网络?

神经元的基本结构

神经元的激活函数

sigmoid函数

Relu函数

全连接神经网络的缺点

卷积神经网络

 卷积神经网络的由来

卷积层

汇聚层

实例


什么是全连接神经网络?

     这张图片在视网膜形成图像后被转换成神经冲动,然后经过视觉神经的传导信号到达大脑,经过大脑皮层对信号的处理我们可以得出判断,这是一只猫,当然有些人可能再根据它的颜色和花纹继而判断出这是一只美短。

     再抽象一下刚才的传递路径,信息由视网膜接收,信号传递到视觉神经,最后再传到大脑皮层,当然这其中的每一层都是由很多神经元组成,前一层的神经元连接着下一层的神经元,这就组成了一个简单的神经网络模型,在前面的这一列是输入层神经元,中间的一列是隐藏层,最后的一层是输出层。这幅图中的隐藏层我只画出来了一层,实际上是可以有很多层的,层和层之间是全连接的结构,同一层的神经元之间没有连接。这种神经网络也叫做全连接神经网络

输入层(Input layer):众多神经元(Neuron)接受大量非线形输入讯息。输入的讯息称为输入向量。

输出层(Output layer)讯息在神经元链接中传输、分析、权衡,形成输出结果。输出的讯息称为输出向量。

隐藏层(Hidden layer):简称“隐层”,是输入层和输出层之间众多神经元和链接组成的各个层面。如果有多个隐藏层,则意味着多个激活函数

神经元的基本结构

 

·X1X2表示输入向量

·W1W2为权重,几个输入则意味着有几个权重,即每个输  入都被赋予一个权重

·b为偏置bias

·g(z)为激活函数

·a为输出值

    举个例子,我们决定晚上去不去食堂吃饭,假如有两个决定因素,首先是食堂有没有你喜欢的饭菜,其次是有没有人陪你一起去,这二个因素可以对应二个输入,分别用x1x2表示。此外,这二个因素对做决策的影响程度不一样,各自的影响程度用权重w1w2表示。

X1:代表有没有你喜欢的饭菜,x1=1代表有,X1=0代表没有,假设它的权重是7.

X2:代表是否有人陪你去,x2=1代表有,X2=0代表没有,是否有人陪同的权重 = 3

这样,咱们的决策模型便建立起来了:g(z) = g( x1*w1 +x2 *w2 + b )g表示激活函数,这里的b可以理解成为更好达到目标而做调整的偏置项。

神经元的激活函数

常用的非线性激活函数有sigmoid、</

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值