基本思想:
每次从当前的最短路径中选出一个,并利用该节点优化图中起始点至图中其它各未访问到的节点的距离。以下图为例,我们欲求出起始点(A)至其它各节点的最短路径:
用数组D来存储A至其它各节点当前路短的距离,例如:D[1]为A-B的当前最短距离,D[2]为A-C当前最短距离。
起始状态为D[0]=0,根据图的连通关系,可以得到:
D[1] = D[0]+L(0->1) = 1
D[2] = D[0]+L(0->2) = 6
D[5] = D[0]+L(0->5) = 10
把D[0]标记为已处理
从未处理过的节点中找出d值最小的节点,由于D[1]=1且B1未被处理过,所以B1为这一步的候选节点,接下来可能得到优化后的D数组:
D[3] = 3
D[4] = 2
将D[1]标记为已处理
同理可以找到最优候选节

本文介绍了Dijkstra最短路径算法的基本思想,通过一个实例展示了如何利用该算法求解图中起始点到其他各节点的最短路径。首先初始化距离数组D,然后不断选择未处理节点中距离最小的进行优化,最终得出所有节点的最短路径。
最低0.47元/天 解锁文章
7789

被折叠的 条评论
为什么被折叠?



