sum(dim)的使用

文章详细阐述了一个在深度学习中常见的计算过程,即通过乘法和求和操作对多维数组进行处理。encoded_feat的计算涉及到assignment_weights、expanded_x和reshaped_codewords,通过在特定维度上的求和,将原始的(32,50176,64,3)尺寸数组压缩成(32,64,3),这一步骤涉及到了数据的聚合和维度减少。
摘要由CSDN通过智能技术生成
  encoded_feat = (assignment_weights * (expanded_x - reshaped_codewords)).sum(1)

#{(32,50176,64,1)[(32,50176,64,3)-(1,1,64,3)].sum(1)}---->{(32,50176,64,1)[(32,50176,64,3).sum(1)}
注意在某维度求和就是对于这个维度的比如x个块当中的同一位置处求和最终生成一个块。而这个块是此维度下属维度的数组成的。比如(32,50176,64,3).sum(1)就是在第二维度进行求和,把(64,3)这个块也就是三四维的数据组成的块,在50176个(64,3)这样的块的相同位置处的数据进行求和输出一个最终的值,最后50176的这个维度也就被压缩没了生成了新的(32,64,3)尺寸的数组

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值