Learning to Select Knowledge for Response Generation in Dialog Systems
1 出发点
-
传统的Seq2Seq模型趋向产生一般的且信息含量较少的回答。
-
现有的具有外部知识的模型中,很少有人证明他们的模型有能力将适当的知识纳入生成的回答中。
2 论文贡献
- 在训练阶段,利用后验知识来实现有效的知识选择和整合,并且指导先验知识分布的训练。在测试阶段利用学习好的先验知识去选择合适的知识并产生具有更多信息的回答。
- 对比其他的模型效果很好(废话)
3 模型结构
图1为网络的整体结构:
3.1 Encoder
Utterance Encoder和Knowledge Encoder都由双向GRU组成,但是两个双向GRU参数并不是共享的。

本文探讨了如何在对话系统中选择和整合适当的知识,以生成更丰富信息的回答。模型包括Utterance和Knowledge Encoder,以及用于知识选择的Knowledge Manager和Decoder。在训练和测试阶段,模型利用后验和先验知识概率进行知识选择,以提高响应质量。
最低0.47元/天 解锁文章
8461

被折叠的 条评论
为什么被折叠?



