重标极差(R/S)分析法计算Hurst指数(Python)

这篇博客介绍了如何使用Python实现重标极差(R/S)分析法来计算Hurst指数,用于时间序列数据的可预测性分析。博主分享了计算过程,并指出网上常见代码可能未遵循标准计算方法,同时提到了在论文中常通过对数散点图展示Hurst指数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题记:

记录下自己论文中态势预测问题中,使用重标极差分析法对时间序列数据集进行可预测分析的过程。网上找到的相关R/S计算Hurst指数的代码,大多没有按照标准计算过程来实现,而相关论文中使用Hurst指数时,往往采用了对数散点图的方式来展示。


最终实现效果:


1、一般的重标极差分析法的计算过程

2、Python实现

水平有限,只是简单实现,没有采用矩阵等方式加速计算过程。

import numpy as np
import matplotlib.pyplot as plt


def my_hurst(obs: list) -> int:
    """
    严格按照 R/S 标准流程推导
    :param obs: 时间序列数据
    :return: Hurst指数
    """
    x_res = []
    y_res = []
    # 划分时间序列的间隔
    step = 3
    for n in range(step, len(obs), step):
        x_res.append(np.log(n))
       
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值