CSP-J备考冲刺必刷题(C++) | AcWing 1135 新年好

本文分享的必刷题目是从蓝桥云课洛谷AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。

欢迎大家订阅我的专栏:算法题解:C++与Python实现

附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总


【题目来源】

AcWing:1135. 新年好 - AcWing题库

【题目描述】

重庆城里有 n n n 个车站, m m m双向 公路连接其中的某些车站。

每两个车站最多用一条公路连接,从任何一个车站出发都可以经过一条或者多条公路到达其他车站,但不同的路径需要花费的时间可能不同。

在一条路径上花费的时间等于路径上所有公路需要的时间之和。

佳佳的家在车站 1 1 1,他有五个亲戚,分别住在车站 a , b , c , d , e a,b,c,d,e a,b,c,d,e

过年了,他需要从自己的家出发,拜访每个亲戚(顺序任意),给他们送去节日的祝福。

怎样走,才需要最少的时间?

【输入】

第一行:包含两个整数 n , m n,m n,m,分别表示车站数目和公路数目。

第二行:包含五个整数 a , b , c , d , e a,b,c,d,e a,b,c,d,e,分别表示五个亲戚所在车站编号。

以下 m m m 行,每行三个整数 x , y , t x,y,t x,y,t,表示公路连接的两个车站编号和时间。

【输出】

输出仅一行,包含一个整数 T T T,表示最少的总时间。

【输入样例】

6 6
2 3 4 5 6
1 2 8
2 3 3
3 4 4
4 5 5
5 6 2
1 6 7

【输出样例】

21

【算法标签】

《AcWing 1135 新年好》 #单源最短路# #枚举#

【代码详解】

#include <bits/stdc++.h>  // 包含所有标准库头文件
using namespace std;

typedef pair<int, int> Node;  // 定义Node类型,存储距离和节点编号
const int N = 50010, M = 200010, INF = 1e9;  // 定义常量:N为节点数量上限,M为边的数量上限,INF为无穷大

int n, m;  // n:车站数量;m:边的数量
int source[6];  // source[0]:佳佳所在车站;source[1..5]:5个亲戚所在车站
int h[N], e[M], w[M], ne[M], idx;  // 邻接表存储图
int dist[6][N];  // dist[i][j]:第i个源点(source[i])到节点j的最短距离
bool st[N];  // st[i]:节点i的距离是否已确定

// 添加一条边:起点a,终点b,权重c
void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c;  // 记录边的终点和权重
    ne[idx] = h[a], h[a] = idx++;  // 将边插入到a的邻接表中
}

// Dijkstra算法实现,start为源点,fdist为存储结果的数组
void dijkstra(int start, int fdist[])
{
    fill(fdist, fdist + N, INF);  // 初始化所有节点的距离为无穷大
    memset(st, false, sizeof(st));  // 初始化st数组
    fdist[start] = 0;  // 源点到自身的距离为0
    priority_queue<Node, vector<Node>, greater<Node>> heap;  // 小根堆
    heap.push({0, start});  // 将源点加入堆

    while (!heap.empty()) {  // 当堆不为空时
        auto nd = heap.top();  // 取出堆顶元素
        heap.pop();
        int t = nd.second, distance = nd.first;  // t:当前节点;distance:源点到t的距离

        if (st[t]) continue;  // 如果t的距离已确定,跳过
        st[t] = true;  // 标记t的距离已确定

        // 遍历t的所有邻接边
        for (int i = h[t]; i != -1; i = ne[i]) {
            int j = e[i];  // 边的终点j
            if (fdist[j] > fdist[t] + w[i]) {  // 如果可以通过t松弛j的距离
                fdist[j] = fdist[t] + w[i];  // 更新j的距离
                heap.push({fdist[j], j});  // 将j加入堆
            }
        }
    }
}

// DFS函数,用于枚举所有可能的访问顺序
// u:已遍历的节点数量;start:当前源点数组下标;distance:当前路径距离之和
int dfs(int u, int start, int distance)
{
    if (u == 6) return distance;  // 如果已经遍历完所有亲戚,返回当前路径距离
    int res = INF;  // 初始化结果为无穷大
    for (int i = 1; i <= 5; i++) {  // 遍历所有亲戚
        if (!st[i]) {  // 如果第i个亲戚未被访问
            int next = source[i];  // 获取第i个亲戚所在车站
            st[i] = true;  // 标记第i个亲戚已被访问
            res = min(res, dfs(u + 1, i, distance + dist[start][next]));  // 递归计算
            st[i] = false;  // 回溯,取消标记
        }
    }
    return res;  // 返回最小路径距离
}

int main()
{
    memset(h, -1, sizeof(h));  // 初始化邻接表,-1表示链表结束
    cin >> n >> m;  // 输入车站数量n,边的数量m
    source[0] = 1;  // 佳佳所在车站编号为1
    for (int i = 1; i <= 5; i++) cin >> source[i];  // 输入5个亲戚所在车站编号

    // 输入m条边
    while (m--) {
        int a, b, c;
        cin >> a >> b >> c;  // 输入边的起点a,终点b,权重c
        add(a, b, c);  // 添加边a->b
        add(b, a, c);  // 添加边b->a(无向图)
    }

    // 对每个源点(佳佳和5个亲戚)运行Dijkstra算法,计算到其他车站的最短距离
    for (int i = 0; i <= 5; i++) dijkstra(source[i], dist[i]);

    memset(st, false, sizeof(st));  // 初始化st数组
    cout << dfs(1, 0, 0) << endl;  // 调用DFS函数,输出最小路径距离

    return 0;  // 程序结束
}

【运行结果】

6 6
2 3 4 5 6
1 2 8
2 3 3
3 4 4
4 5 5
5 6 2
1 6 7
21
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值