本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。
欢迎大家订阅我的专栏:算法题解:C++与Python实现!
附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总
【题目来源】
AcWing:1135. 新年好 - AcWing题库
【题目描述】
重庆城里有 n n n 个车站, m m m 条 双向 公路连接其中的某些车站。
每两个车站最多用一条公路连接,从任何一个车站出发都可以经过一条或者多条公路到达其他车站,但不同的路径需要花费的时间可能不同。
在一条路径上花费的时间等于路径上所有公路需要的时间之和。
佳佳的家在车站 1 1 1,他有五个亲戚,分别住在车站 a , b , c , d , e a,b,c,d,e a,b,c,d,e。
过年了,他需要从自己的家出发,拜访每个亲戚(顺序任意),给他们送去节日的祝福。
怎样走,才需要最少的时间?
【输入】
第一行:包含两个整数 n , m n,m n,m,分别表示车站数目和公路数目。
第二行:包含五个整数 a , b , c , d , e a,b,c,d,e a,b,c,d,e,分别表示五个亲戚所在车站编号。
以下 m m m 行,每行三个整数 x , y , t x,y,t x,y,t,表示公路连接的两个车站编号和时间。
【输出】
输出仅一行,包含一个整数 T T T,表示最少的总时间。
【输入样例】
6 6
2 3 4 5 6
1 2 8
2 3 3
3 4 4
4 5 5
5 6 2
1 6 7
【输出样例】
21
【算法标签】
《AcWing 1135 新年好》 #单源最短路# #枚举#
【代码详解】
#include <bits/stdc++.h> // 包含所有标准库头文件
using namespace std;
typedef pair<int, int> Node; // 定义Node类型,存储距离和节点编号
const int N = 50010, M = 200010, INF = 1e9; // 定义常量:N为节点数量上限,M为边的数量上限,INF为无穷大
int n, m; // n:车站数量;m:边的数量
int source[6]; // source[0]:佳佳所在车站;source[1..5]:5个亲戚所在车站
int h[N], e[M], w[M], ne[M], idx; // 邻接表存储图
int dist[6][N]; // dist[i][j]:第i个源点(source[i])到节点j的最短距离
bool st[N]; // st[i]:节点i的距离是否已确定
// 添加一条边:起点a,终点b,权重c
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c; // 记录边的终点和权重
ne[idx] = h[a], h[a] = idx++; // 将边插入到a的邻接表中
}
// Dijkstra算法实现,start为源点,fdist为存储结果的数组
void dijkstra(int start, int fdist[])
{
fill(fdist, fdist + N, INF); // 初始化所有节点的距离为无穷大
memset(st, false, sizeof(st)); // 初始化st数组
fdist[start] = 0; // 源点到自身的距离为0
priority_queue<Node, vector<Node>, greater<Node>> heap; // 小根堆
heap.push({0, start}); // 将源点加入堆
while (!heap.empty()) { // 当堆不为空时
auto nd = heap.top(); // 取出堆顶元素
heap.pop();
int t = nd.second, distance = nd.first; // t:当前节点;distance:源点到t的距离
if (st[t]) continue; // 如果t的距离已确定,跳过
st[t] = true; // 标记t的距离已确定
// 遍历t的所有邻接边
for (int i = h[t]; i != -1; i = ne[i]) {
int j = e[i]; // 边的终点j
if (fdist[j] > fdist[t] + w[i]) { // 如果可以通过t松弛j的距离
fdist[j] = fdist[t] + w[i]; // 更新j的距离
heap.push({fdist[j], j}); // 将j加入堆
}
}
}
}
// DFS函数,用于枚举所有可能的访问顺序
// u:已遍历的节点数量;start:当前源点数组下标;distance:当前路径距离之和
int dfs(int u, int start, int distance)
{
if (u == 6) return distance; // 如果已经遍历完所有亲戚,返回当前路径距离
int res = INF; // 初始化结果为无穷大
for (int i = 1; i <= 5; i++) { // 遍历所有亲戚
if (!st[i]) { // 如果第i个亲戚未被访问
int next = source[i]; // 获取第i个亲戚所在车站
st[i] = true; // 标记第i个亲戚已被访问
res = min(res, dfs(u + 1, i, distance + dist[start][next])); // 递归计算
st[i] = false; // 回溯,取消标记
}
}
return res; // 返回最小路径距离
}
int main()
{
memset(h, -1, sizeof(h)); // 初始化邻接表,-1表示链表结束
cin >> n >> m; // 输入车站数量n,边的数量m
source[0] = 1; // 佳佳所在车站编号为1
for (int i = 1; i <= 5; i++) cin >> source[i]; // 输入5个亲戚所在车站编号
// 输入m条边
while (m--) {
int a, b, c;
cin >> a >> b >> c; // 输入边的起点a,终点b,权重c
add(a, b, c); // 添加边a->b
add(b, a, c); // 添加边b->a(无向图)
}
// 对每个源点(佳佳和5个亲戚)运行Dijkstra算法,计算到其他车站的最短距离
for (int i = 0; i <= 5; i++) dijkstra(source[i], dist[i]);
memset(st, false, sizeof(st)); // 初始化st数组
cout << dfs(1, 0, 0) << endl; // 调用DFS函数,输出最小路径距离
return 0; // 程序结束
}
【运行结果】
6 6
2 3 4 5 6
1 2 8
2 3 3
3 4 4
4 5 5
5 6 2
1 6 7
21