图像压缩讨论的是减少描述数字图像的数据量的问题。
压缩是通过去除三个基本数据冗余中的一个或多个达到的:1,编码冗余,当所用的码字大于最佳编码长度时会出现编码冗余;
2,像素间冗余,即一幅图像像素间的相关性所造成的冗余;3,心理视觉冗余,即源于人类视觉系统对数据忽略的冗余。
压缩标准-JPEG和JPEG2000。
图像压缩是由两个截然不同的结构块组成的:一个编码器和一个解码器。
当对一幅图像的灰度级或一个灰度级映射操作的输出(像素差,游程长度等)进行编码时,在每次编码一个源符号的限制条件下,对于每个源符号,霍夫曼码包含了最小可能的代码符号数。
霍夫曼编码,霍夫曼解码。
在调用c文件时,必须使用matlab的mex脚本对它们进行编译和连接。如mex unravel.c
C的MEX文件unravel.c由两个不同的部分组成:计算子程序和入口子程序。
与编码及像素间冗余不同,心理视觉冗余与真实的或可计量的视觉信息有关。
函数quantize用于执行IGS量化和传统的低阶比特截断。
在JPEG基准编码系统(该系统基于离散余弦变换),输入和输出图像都限制为8比特图像,而量化的DCT系数限制在11比特。
函数im2jpeg实现压缩,jpeg2im实现解压缩。