用计算机处理模式识别的方法可分为两个主要类别:决策理论方法和结构方法。
模式是第11章讨论过的那些描绘子的排列组合。
在模式识别的文献中,特征常用于表示一个描绘子。
模式分类就是一族具有相同属性的模式。
在实际应用中,两种主要的模式排列方法是向量法(用于定量描述)和字符串法(用于结构描述)。
在识别中,特别是在决策理论应用中,一个基本概念就是基于向量间的距离度量的模式匹配思想。
函数norm计算两个向量之差的范数。
函数mahalanobis计算向量y与向量族的平均值mx之间的距离。
识别的决策理论方法是基于决策(也称为判别)函数的使用。
用于参数估计的模式称为“训练模式”或“训练集”。
模式向量可以由定量的描绘子形成。最小距离分配器的模式匹配。相关匹配。
给定一幅图像f,相关问题就是在该图像中寻找与事先给定的自图像w相匹配的所有位置。
空间相关在实际中总是依靠硬件来实现的。对于原型开发,一种变通的方法是在频率域实现相关。
另一种寻找匹配位置的方法是在相关图像最大值的附近设定一个阈值。
贝叶斯识别经常用于自动分类多谱图像中的区域。函数imstack2vectors有问题。
在实际中,这些决策理论问题的最好解决方法是直接通过训练来产生需要的决策函数。
结构识别技术一般是将感兴趣的物体表示为串、树或图,然后再定于基于这些表示的描绘子和识别规则。
在matlab中,一个串一个一维数组,其中的元素是串中字符的数值码。