主成分分析与奇异值分解的关系

假如我们的原始数据矩阵是 X \mathbf{X} X,维度是 n ∗ m n * m nm

主成分分析
首先计算 X X X的协方差矩阵, C C C的维度是 m ∗ m m*m mm
C = C o v ( X ) C=Cov(X) C=Cov(X)
然后对协方差矩阵进行特征分解,这里 P m ∗ m P_{m*m} Pmm C C C的特征向量组成,对角矩阵 Λ m ∗ m \Lambda_{m*m} Λmm C C C的特征值组成:
C = P Λ P − 1 C=P\Lambda P^{-1} C=PΛP1
最后选取前 r r r列得到 P m ∗ r P_{m*r} Pmr,原始数据通过以下方式降维:
X ~ n ∗ r = X n ∗ m P m ∗ r \tilde{X}_{n*r}=X_{n*m}P_{m*r} X~nr=XnmPmr

奇异值分解
X X X可以被分解为三个矩阵的乘积:
X n ∗ m = U n ∗ n Σ n ∗ m V m ∗ m T X_{n*m} = U_{n*n} \Sigma_{n*m} V^T_{m*m} Xnm=UnnΣnmVmmT

我们知道 U U U是由 X X T XX^T XXT的特征向量组成, V V V是由 X T X X^TX XTX的特征向量组成,而 Σ \Sigma Σ X X T XX^T XXT特征值的平方根组成。

联系是什么?
X X X是中心化了的数据,也就是说均值为0,其协方差矩阵可以由 1 n − 1 X T X \frac{1}{n-1}X^TX n11XTX计算得到。

而可以看到在SVD中, V V V就直接是由 X T X X^TX XTX的特征向量组成的,那这里的 V V V就相当于上面的 P P P

因此,原始数据中心化后还可以直接使用SVD的结果进行降维:

X ~ n ∗ r = X n ∗ m V m ∗ r \tilde{X}_{n*r}=X_{n*m}V_{m*r} X~nr=XnmVmr

注意前提条件:中心化了的原始数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

手撕机

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值