华为OD机试 - 机器人走迷宫 - 深度优先搜索dfs(Python/JS/C/C++ 2025 B卷 200分)

在这里插入图片描述

华为OD机试 2025B卷题库疯狂收录中,刷题点这里

专栏导读

本专栏收录于《华为OD机试真题(Python/JS/C/C++)》

刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。

一、题目描述

  1. 房间由XY的方格组成,例如下图为24的大小。每一个方格以坐标(x,y)描述;
  2. 机器人固定从方格(0,0)出发,只能向东或者向北前进。出口固定为房间的最东北角,如下图的方格(5,3)。用例保证机器人可以从入口走到出口;
  3. 房间有些方格是墙壁,如(4,1),机器人不能经过那儿;
  4. 有些地方是一旦到达就无法走到出口的,如标记为B的方格,称之为陷阱方格;
  5. 有些地方是机器人无法到达的的,如标记为A的方格,称之为不可达方格,不可达方格不包括墙壁所在的位置;
  6. 如下示例图中,陷阱方格有2个,不可达方格有3个;
  7. 请为该机器人实现路径规划功能: 给定房间大小、墙壁位置,请计算出陷阱方格与不可达方格分别有多少个。

二、输入描述

  1. 第一行为房间的X和Y (0 < X,Y = 1000)
  2. 第二行为房间中墙壁的个数N (0 = N< X*Y)

同一行中如果有多个数据以一个空格隔开,用例保证所有的输入数据均合法。 (结尾不带回车换行)

三、输出描述

陷阱方格与不可达方格数量,两个信息在一行中输出,以一个空格隔开。(结尾不带回车换行)

在这里插入图片描述

在这里插入图片描述

四、测试用例

测试用例1:

1、输入

3 3
1
1 1

2、输出

0 0

3、说明

无陷阱,无不可达方格。

测试用例2:

1、输入

5 5
4
1 0
2 2
3 4
4 1

2、输出

3 3

五、解题思路

  1. 第一行输入行数m、列数n;
  2. 第二行输入墙数wallNum;
  3. 下面的wallNum行,输入墙的坐标;
  4. 定义二维矩阵matrix,并进行初始化,默认0,墙为-1;
    • 0:不可达,因为默认是0,向x和y正方向一步一步走的话,如果未涉及,就是不可达,所以是0;
    • -1:墙;
    • 1:可达;
    • -2:陷阱;
  5. 通过深度优先搜索dfs,遍历matrix;
    • 如果x或y正向都可达,则将其设为可达1;
    • 如果x或y正向都不可达,则将其设为陷阱-2;
  6. 遍历matrix;
    • 如果此时为0,表示不可达;
    • 如果此时为-2,表示陷阱;
  7. 按照指定格式输出陷阱和不可达的数量。

六、深度优先搜索dfs

在我们遇到的一些问题当中,有些问题我们不能够确切的找出数学模型,即找不出一种直接求解的方法,解决这一类问题,我们一般采用搜索的方法解决。搜索就是用问题的所有可能去试探,按照一定的顺序、规则,不断去试探,直到找到问题的解,试完了也没有找到解,那就是无解,试探时一定要试探完所有的情况(实际上就是穷举);

对于问题的第一个状态,叫初始状态,要求的状态叫目标状态。
搜索就是把规则应用于实始状态,在其产生的状态中,直到得到一个目标状态为止。
产生新的状态的过程叫扩展(由一个状态,应用规则,产生新状态的过程)。

搜索的要点:

  1. 初始状态;
  2. 重复产生新状态;
  3. 检查新状态是否为目标,是结束,否转(2);

如果搜索是以接近起始状态的程序依次扩展状态的,叫宽度优先搜索。

如果扩展是首先扩展新产生的状态,则叫深度优先搜索。

深度优先搜索用一个数组存放产生的所有状态。

  1. 把初始状态放入数组中,设为当前状态;
  2. 扩展当前的状态,产生一个新的状态放入数组中,同时把新产生的状态设为当前状态;
  3. 判断当前状态是否和前面的重复,如果重复则回到上一个状态,产生它的另一状态;
  4. 判断当前状态是否为目标状态,如果是目标,则找到一个解答,结束算法;
  5. 如果数组为空,说明无解。

六、Python算法源码

import sys
from collections import deque

def main():
    input = sys.stdin.read().split()
    idx = 0
    m = int(input[idx]); idx += 1
    n = int(input[idx]); idx += 1
    wallNum = int(input[idx]); idx += 1

    matrix = [[0 for _ in range(n)] for _ in range(m)]
    for _ in range(wallNum):
        x = int(input[idx]); idx +=1
        y = int(input[idx]); idx +=1
        if 0 <= x < m and 0 <= y < n:
            matrix[x][y] = -1  # 墙壁

    # BFS函数
    def bfs(start_x, start_y):
        visited = [[False for _ in range(n)] for _ in range(m)]
        queue = deque()
        if 0 <= start_x < m and 0 <= start_y < n and matrix[start_x][start_y] != -1:
            queue.append((start_x, start_y))
            visited[start_x][start_y] = True
        directions = [ (1,0), (-1,0), (0,1), (0,-1) ]
        while queue:
            x, y = queue.popleft()
            for dx, dy in directions:
                new_x = x + dx
                new_y = y + dy
                if 0 <= new_x < m and 0 <= new_y < n and not visited[new_x][new_y] and matrix[new_x][new_y] != -1:
                    visited[new_x][new_y] = True
                    queue.append((new_x, new_y))
        return visited

    reachableFromStart = bfs(0, 0)
    canReachExit = bfs(m-1, n-1)

    trapNum = 0
    inaccessibleNum = 0
    for i in range(m):
        for j in range(n):
            if matrix[i][j] == -1:
                continue  # 墙壁不计
            if reachableFromStart[i][j]:
                if not canReachExit[i][j]:
                    trapNum +=1
            else:
                inaccessibleNum +=1

    print(f"{trapNum} {inaccessibleNum}")

if __name__ == "__main__":
    main()

七、JavaScript算法源码

const readline = require('readline');

function main() {
    const rl = readline.createInterface({
        input: process.stdin,
        output: process.stdout
    });

    let input = [];
    rl.on('line', (line) => {
        input = input.concat(line.trim().split(' '));
    });

    rl.on('close', () => {
        let idx = 0;
        const m = parseInt(input[idx++]);
        const n = parseInt(input[idx++]);
        const wallNum = parseInt(input[idx++]);

        let matrix = Array.from({length: m}, () => Array(n).fill(0));

        for (let i = 0; i < wallNum; i++) {
            const x = parseInt(input[idx++]);
            const y = parseInt(input[idx++]);
            if (x >=0 && x < m && y >=0 && y < n) {
                matrix[x][y] = -1; // 墙壁
            }
        }

        // BFS函数
        function bfs(startX, startY) {
            let visited = Array.from({length: m}, () => Array(n).fill(false));
            let queue = [];
            if (startX >=0 && startX < m && startY >=0 && startY < n && matrix[startX][startY] !== -1) {
                queue.push([startX, startY]);
                visited[startX][startY] = true;
            }
            const directions = [[1,0], [-1,0], [0,1], [0,-1]];
            while (queue.length >0) {
                const [x, y] = queue.shift();
                for (let [dx, dy] of directions) {
                    const newX = x + dx;
                    const newY = y + dy;
                    if (newX >=0 && newX < m && newY >=0 && newY < n && !visited[newX][newY] && matrix[newX][newY] !== -1) {
                        visited[newX][newY] = true;
                        queue.push([newX, newY]);
                    }
                }
            }
            return visited;
        }

        const reachableFromStart = bfs(0, 0);
        const canReachExit = bfs(m-1, n-1);

        let trapNum =0;
        let inaccessibleNum =0;

        for (let i =0; i <m; i++) {
            for (let j=0; j <n; j++) {
                if (matrix[i][j] === -1) continue;
                if (reachableFromStart[i][j]) {
                    if (!canReachExit[i][j]) trapNum++;
                } else {
                    inaccessibleNum++;
                }
            }
        }

        console.log(`${trapNum} ${inaccessibleNum}`);
    });
}

main();

八、C算法源码

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>

// 定义队列结构
typedef struct {
    int x;
    int y;
} Point;

typedef struct {
    Point* data;
    int front;
    int rear;
    int size;
} Queue;

// 初始化队列
Queue* initQueue(int maxSize) {
    Queue* q = (Queue*)malloc(sizeof(Queue));
    q->data = (Point*)malloc(sizeof(Point) * maxSize);
    q->front = 0;
    q->rear = 0;
    q->size = maxSize;
    return q;
}

// 入队
bool enqueue(Queue* q, int x, int y) {
    if (q->rear >= q->size) return false;
    q->data[q->rear].x = x;
    q->data[q->rear].y = y;
    q->rear++;
    return true;
}

// 出队
bool dequeue(Queue* q, int* x, int* y) {
    if (q->front >= q->rear) return false;
    *x = q->data[q->front].x;
    *y = q->data[q->front].y;
    q->front++;
    return true;
}

// BFS函数
bool** bfs(int m, int n, int matrix[][n], int startX, int startY) {
    bool** visited = (bool**)malloc(sizeof(bool*) * m);
    for(int i=0;i<m;i++) {
        visited[i] = (bool*)calloc(n, sizeof(bool));
    }

    Queue* q = initQueue(m*n);
    if(startX >=0 && startX < m && startY >=0 && startY < n && matrix[startX][startY] != -1){
        enqueue(q, startX, startY);
        visited[startX][startY] = true;
    }

    int directions[4][2] = { {1,0}, {-1,0}, {0,1}, {0,-1} };

    while(q->front < q->rear){
        int x, y;
        dequeue(q, &x, &y);
        for(int d=0; d<4; d++){
            int newX = x + directions[d][0];
            int newY = y + directions[d][1];
            if(newX >=0 && newX < m && newY >=0 && newY < n && !visited[newX][newY] && matrix[newX][newY] != -1){
                enqueue(q, newX, newY);
                visited[newX][newY] = true;
            }
        }
    }

    // 释放队列内存
    free(q->data);
    free(q);

    return visited;
}

int main(){
    int m, n, wallNum;
    scanf("%d %d", &m, &n);
    scanf("%d", &wallNum);

    // 动态分配矩阵
    int matrix[m][n];
    for(int i=0;i<m;i++) {
        for(int j=0;j<n;j++) {
            matrix[i][j] = 0;
        }
    }

    // 标记墙壁
    for(int i=0;i<wallNum;i++){
        int x, y;
        scanf("%d %d", &x, &y);
        if(x >=0 && x < m && y >=0 && y < n){
            matrix[x][y] = -1;
        }
    }

    // BFS从起点
    bool** reachableFromStart = bfs(m, n, matrix, 0, 0);
    // BFS从出口
    bool** canReachExit = bfs(m, n, matrix, m-1, n-1);

    int trapNum =0, inaccessibleNum =0;
    for(int i=0;i<m;i++){
        for(int j=0;j<n;j++){
            if(matrix[i][j] == -1) continue;
            if(reachableFromStart[i][j]){
                if(!canReachExit[i][j]){
                    trapNum++;
                }
            }
            else{
                inaccessibleNum++;
            }
        }
    }

    printf("%d %d", trapNum, inaccessibleNum);

    // 释放内存
    for(int i=0;i<m;i++) {
        free(reachableFromStart[i]);
        free(canReachExit[i]);
    }
    free(reachableFromStart);
    free(canReachExit);

    return 0;
}

九、C++算法源码

#include <bits/stdc++.h>
using namespace std;

// BFS函数
vector<vector<bool>> bfs(int m, int n, vector<vector<int>> &matrix, int startX, int startY){
    vector<vector<bool>> visited(m, vector<bool>(n, false));
    queue<pair<int, int>> q;
    if(startX >=0 && startX < m && startY >=0 && startY < n && matrix[startX][startY] != -1){
        q.push({startX, startY});
        visited[startX][startY] = true;
    }

    // 四个方向:东、西、南、北
    int directions[4][2] = { {1,0}, {-1,0}, {0,1}, {0,-1} };

    while(!q.empty()){
        pair<int, int> current = q.front(); q.pop();
        int x = current.first;
        int y = current.second;
        for(auto &dir : directions){
            int newX = x + dir[0];
            int newY = y + dir[1];
            if(newX >=0 && newX < m && newY >=0 && newY < n && !visited[newX][newY] && matrix[newX][newY] != -1){
                visited[newX][newY] = true;
                q.push({newX, newY});
            }
        }
    }

    return visited;
}

int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    int m, n, wallNum;
    cin >> m >> n;
    cin >> wallNum;

    vector<vector<int>> matrix(m, vector<int>(n, 0));
    for(int i=0;i<wallNum;i++){
        int x, y;
        cin >> x >> y;
        if(x >=0 && x < m && y >=0 && y < n){
            matrix[x][y] = -1;
        }
    }

    // BFS从起点
    vector<vector<bool>> reachableFromStart = bfs(m, n, matrix, 0, 0);
    // BFS从出口
    vector<vector<bool>> canReachExit = bfs(m, n, matrix, m-1, n-1);

    int trapNum =0, inaccessibleNum =0;
    for(int i=0;i<m;i++){
        for(int j=0;j<n;j++){
            if(matrix[i][j] == -1) continue;
            if(reachableFromStart[i][j]){
                if(!canReachExit[i][j]){
                    trapNum++;
                }
            }
            else{
                inaccessibleNum++;
            }
        }
    }

    cout << trapNum << " " << inaccessibleNum;
    return 0;
}


🏆下一篇:华为OD机试真题 - 简易内存池(Python/JS/C/C++ 2025 B卷 200分)

🏆本文收录于,华为OD机试真题(Python/JS/C/C++)

刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哪 吒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值