华为OD机试 2025B卷题库疯狂收录中,刷题点这里
专栏导读
本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。
刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。
一、题目描述
- 房间由XY的方格组成,例如下图为24的大小。每一个方格以坐标(x,y)描述;
- 机器人固定从方格(0,0)出发,只能向东或者向北前进。出口固定为房间的最东北角,如下图的方格(5,3)。用例保证机器人可以从入口走到出口;
- 房间有些方格是墙壁,如(4,1),机器人不能经过那儿;
- 有些地方是一旦到达就无法走到出口的,如标记为B的方格,称之为陷阱方格;
- 有些地方是机器人无法到达的的,如标记为A的方格,称之为不可达方格,不可达方格不包括墙壁所在的位置;
- 如下示例图中,陷阱方格有2个,不可达方格有3个;
- 请为该机器人实现路径规划功能: 给定房间大小、墙壁位置,请计算出陷阱方格与不可达方格分别有多少个。
二、输入描述
- 第一行为房间的X和Y (0 < X,Y = 1000)
- 第二行为房间中墙壁的个数N (0 = N< X*Y)
同一行中如果有多个数据以一个空格隔开,用例保证所有的输入数据均合法。 (结尾不带回车换行)
三、输出描述
陷阱方格与不可达方格数量,两个信息在一行中输出,以一个空格隔开。(结尾不带回车换行)
四、测试用例
测试用例1:
1、输入
3 3
1
1 1
2、输出
0 0
3、说明
无陷阱,无不可达方格。
测试用例2:
1、输入
5 5
4
1 0
2 2
3 4
4 1
2、输出
3 3
五、解题思路
- 第一行输入行数m、列数n;
- 第二行输入墙数wallNum;
- 下面的wallNum行,输入墙的坐标;
- 定义二维矩阵matrix,并进行初始化,默认0,墙为-1;
- 0:不可达,因为默认是0,向x和y正方向一步一步走的话,如果未涉及,就是不可达,所以是0;
- -1:墙;
- 1:可达;
- -2:陷阱;
- 通过深度优先搜索dfs,遍历matrix;
- 如果x或y正向都可达,则将其设为可达1;
- 如果x或y正向都不可达,则将其设为陷阱-2;
- 遍历matrix;
- 如果此时为0,表示不可达;
- 如果此时为-2,表示陷阱;
- 按照指定格式输出陷阱和不可达的数量。
六、深度优先搜索dfs
在我们遇到的一些问题当中,有些问题我们不能够确切的找出数学模型,即找不出一种直接求解的方法,解决这一类问题,我们一般采用搜索的方法解决。搜索就是用问题的所有可能去试探,按照一定的顺序、规则,不断去试探,直到找到问题的解,试完了也没有找到解,那就是无解,试探时一定要试探完所有的情况(实际上就是穷举);
对于问题的第一个状态,叫初始状态,要求的状态叫目标状态。
搜索就是把规则应用于实始状态,在其产生的状态中,直到得到一个目标状态为止。
产生新的状态的过程叫扩展(由一个状态,应用规则,产生新状态的过程)。
搜索的要点:
- 初始状态;
- 重复产生新状态;
- 检查新状态是否为目标,是结束,否转(2);
如果搜索是以接近起始状态的程序依次扩展状态的,叫宽度优先搜索。
如果扩展是首先扩展新产生的状态,则叫深度优先搜索。
深度优先搜索用一个数组存放产生的所有状态。
- 把初始状态放入数组中,设为当前状态;
- 扩展当前的状态,产生一个新的状态放入数组中,同时把新产生的状态设为当前状态;
- 判断当前状态是否和前面的重复,如果重复则回到上一个状态,产生它的另一状态;
- 判断当前状态是否为目标状态,如果是目标,则找到一个解答,结束算法;
- 如果数组为空,说明无解。
六、Python算法源码
import sys
from collections import deque
def main():
input = sys.stdin.read().split()
idx = 0
m = int(input[idx]); idx += 1
n = int(input[idx]); idx += 1
wallNum = int(input[idx]); idx += 1
matrix = [[0 for _ in range(n)] for _ in range(m)]
for _ in range(wallNum):
x = int(input[idx]); idx +=1
y = int(input[idx]); idx +=1
if 0 <= x < m and 0 <= y < n:
matrix[x][y] = -1 # 墙壁
# BFS函数
def bfs(start_x, start_y):
visited = [[False for _ in range(n)] for _ in range(m)]
queue = deque()
if 0 <= start_x < m and 0 <= start_y < n and matrix[start_x][start_y] != -1:
queue.append((start_x, start_y))
visited[start_x][start_y] = True
directions = [ (1,0), (-1,0), (0,1), (0,-1) ]
while queue:
x, y = queue.popleft()
for dx, dy in directions:
new_x = x + dx
new_y = y + dy
if 0 <= new_x < m and 0 <= new_y < n and not visited[new_x][new_y] and matrix[new_x][new_y] != -1:
visited[new_x][new_y] = True
queue.append((new_x, new_y))
return visited
reachableFromStart = bfs(0, 0)
canReachExit = bfs(m-1, n-1)
trapNum = 0
inaccessibleNum = 0
for i in range(m):
for j in range(n):
if matrix[i][j] == -1:
continue # 墙壁不计
if reachableFromStart[i][j]:
if not canReachExit[i][j]:
trapNum +=1
else:
inaccessibleNum +=1
print(f"{trapNum} {inaccessibleNum}")
if __name__ == "__main__":
main()
七、JavaScript算法源码
const readline = require('readline');
function main() {
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout
});
let input = [];
rl.on('line', (line) => {
input = input.concat(line.trim().split(' '));
});
rl.on('close', () => {
let idx = 0;
const m = parseInt(input[idx++]);
const n = parseInt(input[idx++]);
const wallNum = parseInt(input[idx++]);
let matrix = Array.from({length: m}, () => Array(n).fill(0));
for (let i = 0; i < wallNum; i++) {
const x = parseInt(input[idx++]);
const y = parseInt(input[idx++]);
if (x >=0 && x < m && y >=0 && y < n) {
matrix[x][y] = -1; // 墙壁
}
}
// BFS函数
function bfs(startX, startY) {
let visited = Array.from({length: m}, () => Array(n).fill(false));
let queue = [];
if (startX >=0 && startX < m && startY >=0 && startY < n && matrix[startX][startY] !== -1) {
queue.push([startX, startY]);
visited[startX][startY] = true;
}
const directions = [[1,0], [-1,0], [0,1], [0,-1]];
while (queue.length >0) {
const [x, y] = queue.shift();
for (let [dx, dy] of directions) {
const newX = x + dx;
const newY = y + dy;
if (newX >=0 && newX < m && newY >=0 && newY < n && !visited[newX][newY] && matrix[newX][newY] !== -1) {
visited[newX][newY] = true;
queue.push([newX, newY]);
}
}
}
return visited;
}
const reachableFromStart = bfs(0, 0);
const canReachExit = bfs(m-1, n-1);
let trapNum =0;
let inaccessibleNum =0;
for (let i =0; i <m; i++) {
for (let j=0; j <n; j++) {
if (matrix[i][j] === -1) continue;
if (reachableFromStart[i][j]) {
if (!canReachExit[i][j]) trapNum++;
} else {
inaccessibleNum++;
}
}
}
console.log(`${trapNum} ${inaccessibleNum}`);
});
}
main();
八、C算法源码
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
// 定义队列结构
typedef struct {
int x;
int y;
} Point;
typedef struct {
Point* data;
int front;
int rear;
int size;
} Queue;
// 初始化队列
Queue* initQueue(int maxSize) {
Queue* q = (Queue*)malloc(sizeof(Queue));
q->data = (Point*)malloc(sizeof(Point) * maxSize);
q->front = 0;
q->rear = 0;
q->size = maxSize;
return q;
}
// 入队
bool enqueue(Queue* q, int x, int y) {
if (q->rear >= q->size) return false;
q->data[q->rear].x = x;
q->data[q->rear].y = y;
q->rear++;
return true;
}
// 出队
bool dequeue(Queue* q, int* x, int* y) {
if (q->front >= q->rear) return false;
*x = q->data[q->front].x;
*y = q->data[q->front].y;
q->front++;
return true;
}
// BFS函数
bool** bfs(int m, int n, int matrix[][n], int startX, int startY) {
bool** visited = (bool**)malloc(sizeof(bool*) * m);
for(int i=0;i<m;i++) {
visited[i] = (bool*)calloc(n, sizeof(bool));
}
Queue* q = initQueue(m*n);
if(startX >=0 && startX < m && startY >=0 && startY < n && matrix[startX][startY] != -1){
enqueue(q, startX, startY);
visited[startX][startY] = true;
}
int directions[4][2] = { {1,0}, {-1,0}, {0,1}, {0,-1} };
while(q->front < q->rear){
int x, y;
dequeue(q, &x, &y);
for(int d=0; d<4; d++){
int newX = x + directions[d][0];
int newY = y + directions[d][1];
if(newX >=0 && newX < m && newY >=0 && newY < n && !visited[newX][newY] && matrix[newX][newY] != -1){
enqueue(q, newX, newY);
visited[newX][newY] = true;
}
}
}
// 释放队列内存
free(q->data);
free(q);
return visited;
}
int main(){
int m, n, wallNum;
scanf("%d %d", &m, &n);
scanf("%d", &wallNum);
// 动态分配矩阵
int matrix[m][n];
for(int i=0;i<m;i++) {
for(int j=0;j<n;j++) {
matrix[i][j] = 0;
}
}
// 标记墙壁
for(int i=0;i<wallNum;i++){
int x, y;
scanf("%d %d", &x, &y);
if(x >=0 && x < m && y >=0 && y < n){
matrix[x][y] = -1;
}
}
// BFS从起点
bool** reachableFromStart = bfs(m, n, matrix, 0, 0);
// BFS从出口
bool** canReachExit = bfs(m, n, matrix, m-1, n-1);
int trapNum =0, inaccessibleNum =0;
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(matrix[i][j] == -1) continue;
if(reachableFromStart[i][j]){
if(!canReachExit[i][j]){
trapNum++;
}
}
else{
inaccessibleNum++;
}
}
}
printf("%d %d", trapNum, inaccessibleNum);
// 释放内存
for(int i=0;i<m;i++) {
free(reachableFromStart[i]);
free(canReachExit[i]);
}
free(reachableFromStart);
free(canReachExit);
return 0;
}
九、C++算法源码
#include <bits/stdc++.h>
using namespace std;
// BFS函数
vector<vector<bool>> bfs(int m, int n, vector<vector<int>> &matrix, int startX, int startY){
vector<vector<bool>> visited(m, vector<bool>(n, false));
queue<pair<int, int>> q;
if(startX >=0 && startX < m && startY >=0 && startY < n && matrix[startX][startY] != -1){
q.push({startX, startY});
visited[startX][startY] = true;
}
// 四个方向:东、西、南、北
int directions[4][2] = { {1,0}, {-1,0}, {0,1}, {0,-1} };
while(!q.empty()){
pair<int, int> current = q.front(); q.pop();
int x = current.first;
int y = current.second;
for(auto &dir : directions){
int newX = x + dir[0];
int newY = y + dir[1];
if(newX >=0 && newX < m && newY >=0 && newY < n && !visited[newX][newY] && matrix[newX][newY] != -1){
visited[newX][newY] = true;
q.push({newX, newY});
}
}
}
return visited;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int m, n, wallNum;
cin >> m >> n;
cin >> wallNum;
vector<vector<int>> matrix(m, vector<int>(n, 0));
for(int i=0;i<wallNum;i++){
int x, y;
cin >> x >> y;
if(x >=0 && x < m && y >=0 && y < n){
matrix[x][y] = -1;
}
}
// BFS从起点
vector<vector<bool>> reachableFromStart = bfs(m, n, matrix, 0, 0);
// BFS从出口
vector<vector<bool>> canReachExit = bfs(m, n, matrix, m-1, n-1);
int trapNum =0, inaccessibleNum =0;
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(matrix[i][j] == -1) continue;
if(reachableFromStart[i][j]){
if(!canReachExit[i][j]){
trapNum++;
}
}
else{
inaccessibleNum++;
}
}
}
cout << trapNum << " " << inaccessibleNum;
return 0;
}
🏆下一篇:华为OD机试真题 - 简易内存池(Python/JS/C/C++ 2025 B卷 200分)
🏆本文收录于,华为OD机试真题(Python/JS/C/C++)
刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。