华为OD机试 - 最多等和不相交连续子序列 - 贪心算法(Python/JS/C/C++ 2025 B卷 100分)

在这里插入图片描述

2025B卷华为OD机试统一考试题库清单(持续收录中)以及考点说明(Python/JS/C/C++)

专栏导读

本专栏收录于《华为OD机试真题(Python/JS/C/C++)》

刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。

一、题目描述

给定一个数列,我们称其中连续的元素为连续子序列,称这些元素的和为连续子序列的和。

数列中可能存在几个组连续子序列,组内的连续子序列互不相交且有相同的和。

求一组连续子序列,组内子序列的数目最多。

输出这个数目。

二、输入描述

第一行输入为 数组长度 N, 1 <= N <= 103

第二行为 N 个用空格分开的整数 Ci, -105 <= Ci <= 105

三、输出描述

第一行是一个整数 M,表示满足要求的最多的组内子序列的数目。

四、测试用例

测试用例1

1、输入

5
1 -1 1 -1 1

2、输出

3

3、说明

和为1的连续子序列最多,可以选择位置[0,0], [2,2], [4,4]三个不相交区间

测试用例2

1、输入

3
1 2 3

2、输出

2

3、说明

和为3的子序列有[3]和[1,2],可以选择2个不相交区间

五、解题思路

  1. 枚举所有可能的连续子序列及其和值
  2. 将相同和值的子序列分组
  3. 对于每组,使用贪心算法求解最大不相交区间数量
  4. 返回所有组中的最大值

使用HashMap存储每个和值对应的所有区间
使用贪心算法解决区间调度问题:按结束位置排序,依次选择不相交的区间

六、Python算法源码

# 读取数组长度
n = int(input())

# 读取数组元素,并转换为整数列表
nums = list(map(int, input().split()))

# 使用字典存储每个和值对应的所有连续子序列区间
# key: 连续子序列的和, value: 对应区间列表 [起始位置, 结束位置]
sum_to_intervals = {}

# 枚举所有可能的连续子序列
for i in range(n):
    current_sum = 0
    for j in range(i, n):
        current_sum += nums[j]  # 累加得到从i到j的连续子序列和
        # 将区间[i, j]添加到对应和值的列表中
        if current_sum not in sum_to_intervals:
            sum_to_intervals[current_sum] = []
        sum_to_intervals[current_sum].append([i, j])

max_count = 0  # 记录最大的不相交区间数量

# 对于每个和值,计算最多能选择多少个互不相交的区间
for intervals in sum_to_intervals.values():
    # 贪心算法:按照区间结束位置排序
    intervals.sort(key=lambda x: x[1])
    
    count = 0  # 当前和值对应的最大不相交区间数量
    last_end = -1  # 上一个选择的区间的结束位置
    
    # 遍历所有区间,贪心选择
    for interval in intervals:
        # 如果当前区间的起始位置大于上一个区间的结束位置,则可以选择
        if interval[0] > last_end:
            count += 1
            last_end = interval[1]  # 更新结束位置
    
    # 更新全局最大值
    max_count = max(max_count, count)

# 输出结果
print(max_count)

七、JavaScript算法源码

// 从标准输入读取数据
const readline = require('readline');

const rl = readline.createInterface({
    input: process.stdin,
    output: process.stdout
});

let lineCount = 0;
let n = 0;
let nums = [];

rl.on('line', (line) => {
    if (lineCount === 0) {
        // 读取数组长度
        n = parseInt(line);
        lineCount++;
    } else {
        // 读取数组元素,并转换为整数数组
        nums = line.split(' ').map(Number);
        rl.close();
    }
});

rl.on('close', () => {
    // 使用Map存储每个和值对应的所有连续子序列区间
    // key: 连续子序列的和, value: 对应区间列表 [起始位置, 结束位置]
    const sumToIntervals = new Map();
    
    // 枚举所有可能的连续子序列
    for (let i = 0; i < n; i++) {
        let currentSum = 0;
        for (let j = i; j < n; j++) {
            currentSum += nums[j]; // 累加得到从i到j的连续子序列和
            // 将区间[i, j]添加到对应和值的列表中
            if (!sumToIntervals.has(currentSum)) {
                sumToIntervals.set(currentSum, []);
            }
            sumToIntervals.get(currentSum).push([i, j]);
        }
    }
    
    let maxCount = 0; // 记录最大的不相交区间数量
    
    // 对于每个和值,计算最多能选择多少个互不相交的区间
    for (const intervals of sumToIntervals.values()) {
        // 贪心算法:按照区间结束位置排序
        intervals.sort((a, b) => a[1] - b[1]);
        
        let count = 0; // 当前和值对应的最大不相交区间数量
        let lastEnd = -1; // 上一个选择的区间的结束位置
        
        // 遍历所有区间,贪心选择
        for (const interval of intervals) {
            // 如果当前区间的起始位置大于上一个区间的结束位置,则可以选择
            if (interval[0] > lastEnd) {
                count++;
                lastEnd = interval[1]; // 更新结束位置
            }
        }
        
        // 更新全局最大值
        maxCount = Math.max(maxCount, count);
    }
    
    // 输出结果
    console.log(maxCount);
});

八、C算法源码

#include <stdio.h>
#include <stdlib.h>

// 定义区间结构体
typedef struct {
    int start; // 区间起始位置
    int end;   // 区间结束位置
} Interval;

// 比较函数,用于按结束位置排序
int compare(const void *a, const void *b) {
    Interval *ia = (Interval *)a;
    Interval *ib = (Interval *)b;
    return ia->end - ib->end;
}

int main() {
    int n;
    // 读取数组长度
    scanf("%d", &n);
    
    // 动态分配数组空间并读取数组元素
    int *nums = (int *)malloc(n * sizeof(int));
    for (int i = 0; i < n; i++) {
        scanf("%d", &nums[i]);
    }
    
    // 由于C语言没有内置的HashMap,我们使用一个较大的数组来模拟
    // 假设所有可能的和值在[-10^6, 10^6]范围内
    const int MAX_SUM = 1000000;
    const int OFFSET = MAX_SUM; // 偏移量,将负数索引转换为正数
    
    // 为每个可能的和值分配区间数组
    Interval **sum_intervals = (Interval **)calloc(2 * MAX_SUM + 1, sizeof(Interval *));
    int *sum_counts = (int *)calloc(2 * MAX_SUM + 1, sizeof(int));
    
    // 枚举所有可能的连续子序列
    for (int i = 0; i < n; i++) {
        int current_sum = 0;
        for (int j = i; j < n; j++) {
            current_sum += nums[j]; // 累加得到从i到j的连续子序列和
            int index = current_sum + OFFSET; // 转换为数组索引
            
            // 为该和值分配或扩展区间数组
            if (sum_intervals[index] == NULL) {
                sum_intervals[index] = (Interval *)malloc(n * n * sizeof(Interval));
            }
            
            // 添加新区间
            sum_intervals[index][sum_counts[index]].start = i;
            sum_intervals[index][sum_counts[index]].end = j;
            sum_counts[index]++;
        }
    }
    
    int max_count = 0; // 记录最大的不相交区间数量
    
    // 对于每个和值,计算最多能选择多少个互不相交的区间
    for (int i = 0; i < 2 * MAX_SUM + 1; i++) {
        if (sum_counts[i] > 0) {
            // 贪心算法:按照区间结束位置排序
            qsort(sum_intervals[i], sum_counts[i], sizeof(Interval), compare);
            
            int count = 0; // 当前和值对应的最大不相交区间数量
            int last_end = -1; // 上一个选择的区间的结束位置
            
            // 遍历所有区间,贪心选择
            for (int j = 0; j < sum_counts[i]; j++) {
                // 如果当前区间的起始位置大于上一个区间的结束位置,则可以选择
                if (sum_intervals[i][j].start > last_end) {
                    count++;
                    last_end = sum_intervals[i][j].end; // 更新结束位置
                }
            }
            
            // 更新全局最大值
            if (count > max_count) {
                max_count = count;
            }
        }
    }
    
    // 输出结果
    printf("%d\n", max_count);
    
    // 释放内存
    for (int i = 0; i < 2 * MAX_SUM + 1; i++) {
        if (sum_intervals[i] != NULL) {
            free(sum_intervals[i]);
        }
    }
    free(sum_intervals);
    free(sum_counts);
    free(nums);
    
    return 0;
}

九、C++算法源码

#include <iostream>
#include <vector>
#include <unordered_map>
#include <algorithm>

using namespace std;

int main() {
    int n;
    // 读取数组长度
    cin >> n;
    
    // 读取数组元素
    vector<int> nums(n);
    for (int i = 0; i < n; i++) {
        cin >> nums[i];
    }
    
    // 使用unordered_map存储每个和值对应的所有连续子序列区间
    // key: 连续子序列的和, value: 对应区间列表 pair<起始位置, 结束位置>
    unordered_map<int, vector<pair<int, int>>> sumToIntervals;
    
    // 枚举所有可能的连续子序列
    for (int i = 0; i < n; i++) {
        int currentSum = 0;
        for (int j = i; j < n; j++) {
            currentSum += nums[j]; // 累加得到从i到j的连续子序列和
            // 将区间[i, j]添加到对应和值的列表中
            sumToIntervals[currentSum].push_back({i, j});
        }
    }
    
    int maxCount = 0; // 记录最大的不相交区间数量
    
    // 对于每个和值,计算最多能选择多少个互不相交的区间
    for (auto& entry : sumToIntervals) {
        vector<pair<int, int>>& intervals = entry.second;
        
        // 贪心算法:按照区间结束位置排序
        sort(intervals.begin(), intervals.end(), 
             [](const pair<int, int>& a, const pair<int, int>& b) {
                 return a.second < b.second;
             });
        
        int count = 0; // 当前和值对应的最大不相交区间数量
        int lastEnd = -1; // 上一个选择的区间的结束位置
        
        // 遍历所有区间,贪心选择
        for (const auto& interval : intervals) {
            // 如果当前区间的起始位置大于上一个区间的结束位置,则可以选择
            if (interval.first > lastEnd) {
                count++;
                lastEnd = interval.second; // 更新结束位置
            }
        }
        
        // 更新全局最大值
        maxCount = max(maxCount, count);
    }
    
    // 输出结果
    cout << maxCount << endl;
    
    return 0;
}

🏆下一篇:华为OD机试真题 - 简易内存池(Python/JS/C/C++ 2025 B卷 200分)

🏆本文收录于,华为OD机试真题(Python/JS/C/C++)

刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哪 吒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值