简介
机器学习是指帮助软件在没有明确的程序或规则的情况下执行任务。
对于传统计算机编程,程序员会指定计算机应该使用的规则。但是,机器学习需要另一种思维方式。
现实中的机器学习对数据分析的注重程度远高于编码。程序员提供一组样本,然后计算机从数据中学习各种模式。
可以将机器学习视为“使用数据进行编程”。
TensorFlow 是一个端到端开源机器学习平台。它拥有一个全面而灵活的生态系统,其中包含各种工具、库和社区资源,可助力研究人员推动先进机器学习技术的发展,并使开发者能够轻松地构建和部署由机器学习提供支持的应用。
下面开始安装。
Anaconda安装
Anaconda 是一个用于科学计算的 Python 发行版,支持 Linux, Mac, Windows, 包含了众多流行的科学计算、数据分析的 Python 包。
- 下载:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
- 安装,并添加到系统路径
安装及使用请参考:Anaconda介绍、安装与使用示例
安装tf2
- 从开始菜单打开Anaconda Prompt
- 设置conda源为国内清华站:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
- 在Anaconda中创建一个tf2:
conda create -n tf2 python=3.6
,python版本为3.5-3.7,不建议3.5,因为它的默认pip版本太低
如果遇到下述问题:
需要从目录D:\Anaconda3\Library\bin
下复制libcrypto-1_1-x64.*
和libssl-1_1-x64.*
到D:\Anaconda3\DLLs
,重试即可。
- 进入tf2:
activate tf2
- 升级包:
conda upgrade --all
- 查看包版本,确认pip版本为19以上
- 设置pip源:
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
- 安装tensorflow2:
pip install --upgrade tensorflow
,这需要一点时间下载,如果失败,请重试 - 验证安装效果:
import tensorflow as tf
from tensorflow.keras import layers
print(tf.__version__)
print(tf.keras.__version__)
- 测试电脑上没有GPU,所以会有一些警告。没有关系,tf是安装ok了
小节
网上有一些方法,有的比较复杂,有的会遇到一些问题,解决这些问题花费的时间要比安装时间还长,真烦人。
自从使用了Anaconda后,腰不酸了,背也不痛了,上班也有劲了…
没有用过的同学赶紧试试吧。