论文公式里的 加号 结合代码的一些常识

本文探讨了在论文公式中加号的实际含义,通过矩阵运算的例子解释了X1和X2如何通过权重W1和W2进行结合。X1和X2的维度为[batch_size, feature_size],经过与W1和W2的矩阵相乘后,可以等价于concat后的[X1:X2]与W3的乘积,其中W1和W2的尺寸分别为[feature_size, feature_size2],W3的尺寸为[feature_size*2, feature_size2],揭示了深度学习中加法操作的数学原理。" 93485548,7376343,二值权重神经网络训练实践与理解,"['深度学习', '量化', '神经网络', '训练优化', '模型压缩']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

X1是[batch_size,feature_size]
X2是[batch_size,feature_size]
X1*W1+X2*W2等价于[X1:X2]*W3
其中*是矩阵相乘,:是feature dimension concat
W1是[feature_size,feature_size2]
W2是[feature_size,feature_size2]
W3是[feature_size*2,feature_size2]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

耐心是关键

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值