最长公共子串(DP)和子序列(LCS)——目前限于求解两个字符串

1、区别
1.1对于一个字符串而言,比如:pikachu
1.2字串是在字符串中,取出一块(连续的),如:pik, ach, kac等
1.3子序列指的是从字符串中,顺序取出字符,但是可以不连续:如:pau, kch, icu等

2、代码

#include<iostream>
#include<vector>
#include<string>
using namespace std;
string a, b, c, d;
		// 最长公共子串
void con_substr(string a, string b){
	vector<vector<int> > dp(a.size(),vector<int>(b.size(), 0));//谁为行谁为列可根据个人喜好而定
	int Max = 0; 
	for(int i = 1; i < a.size(); i++){
		for(int j = 1; j < b.size() ; j++){
			if(a[i] == b[j]){
				dp[i][j] = dp[i-1][j-1] + 1;
				Max = max(dp[i][j], Max);					//这一步其实也能算上一个简化过程写在这里面为了降低
															//时间复杂度,另写两个for或者一个for遍历多不好
			}
		}
	}
	//---------------------------------------------
	for(int i = 0; i < a.size(); i++){			
		for(int j = 0; j < b.size(); j++){
			cout << dp[i][j];					//用来显示运算过程
		}										//用来显示运算过程
		cout << " " << endl;					//用来显示运算过程
	}
	//--------------------------------------------------
	cout << Max;
}
int main(){
	a = " ";									//有特别用意
	b = " ";
	cin >> c;
	getchar();
	cin >> d;
	a += c;
	b += d;
    con_substr(a, b);
	return 0;
}

最长公共子串输入与输出:
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最长公共子序列(Longest Common Subsequence, LCS)和最长公共子串(Longest Common Substring)是两个常见的字符串相关问题。 最长公共子序列是指给定两个字符串,要求找到它们之间最长的公共子序列的长度。子序列是从原字符串中删除若干个字符而得到的新字符串字符在新字符串中的相对顺序与原字符串中的保持一致。动态规划是求解LCS问题的常用方法。 以字符串s1 = "ABCBDAB"和s2 = "BDCAB"为例,可以使用动态规划的方法求解最长公共子序列的长度。首先创建一个二维数组dpdp[i][j]表示s1的前i个字符和s2的前j个字符之间的最长公共子序列的长度,那么有以下推导关系: 1. 当i=0或j=0时,dp[i][j]=0。 2. 当s1[i-1]=s2[j-1]时,dp[i][j] = dp[i-1][j-1] + 1。 3. 当s1[i-1]!=s2[j-1]时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。 最后,dp[len(s1)][len(s2)]即为最长公共子序列的长度。 对于最长公共子串,要求找到两个字符串最长的公共连续子串的长度。连续子串是指在原字符串中连续出现的字符子序列。同样可以使用动态规划来解决该问题。 仍以上述两个字符串s1和s2为例,创建一个二维数组dpdp[i][j]表示以s1[i-1]和s2[j-1]为结尾的公共子串的长度,那么有以下推导关系: 1. 当i=0或j=0时,dp[i][j]=0。 2. 当s1[i-1]=s2[j-1]时,dp[i][j] = dp[i-1][j-1] + 1。 3. 当s1[i-1]!=s2[j-1]时,dp[i][j] = 0。 最后,dp矩阵中的最大值即为最长公共子串的长度。 以上就是求解最长公共子序列最长公共子串的常见方法。在实际应用中,我们可以根据具体的问题选择合适的方法,并结合动态规划来解决这些字符串相关的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值