题目描述
你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。
在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] ,表示如果要学习课程 ai 则 必须 先学习课程 bi 。
例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。
请你判断是否可能完成所有课程的学习?如果可以,返回 true ;否则,返回 false 。
示例 1:
输入:numCourses = 2, prerequisites = [[1,0]]
输出:true
解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。示例 2:
输入:numCourses = 2, prerequisites = [[1,0],[0,1]]
输出:false
解释:总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。提示:
1 <= numCourses <= 105
0 <= prerequisites.length <= 5000
prerequisites[i].length == 2
0 <= ai, bi < numCourses
prerequisites[i] 中的所有课程对 互不相同
算法分析
方法一:深度优先搜索
思路
我们可以将深度优先搜索的流程与拓扑排序的求解联系起来,用一个栈来存储所有已经搜索完成的节点。
对于一个节点 u,如果它的所有相邻节点都已经搜索完成,那么在搜索回溯到 u 的时候,u本身也会变成一个已经搜索完成的节点。这里的「相邻节点」指的是从 u出发通过一条有向边可以到达的所有节点。
假设我们当前搜索到了节点 u,如果它的所有相邻节点都已经搜索完成,那么这些节点都已经在栈中了,此时我们就可以把 u入栈。可以发现,如果我们从栈顶往栈底的顺序看,由于 u处于栈顶的位置,那么 u出现在所有 u的相邻节点的前面。因此对于 u这个节点而言,它是满足拓扑排序的要求的。
这样以来,我们对图进行一遍深度优先搜索。当每个节点进行回溯的时候,我们把该节点放入栈中。最终从栈顶到栈底的序列就是一种拓扑排序。
算法
对于图中的任意一个节点,它在搜索的过程中有三种状态,即:
「未搜索」:我们还没有搜索到这个节点;
「搜索中」:我们搜索过这个节点,但还没有回溯到该节点,即该节点还没有入栈,还有相邻的节点没有搜索完成);
「已完成」:我们搜索过并且回溯过这个节点,即该节点已经入栈,并且所有该节点的相邻节点都出现在栈的更底部的位置,满足拓扑排序的要求。
通过上述的三种状态,我们就可以给出使用深度优先搜索得到拓扑排序的算法流程,在每一轮的搜索搜索开始时,我们任取一个「未搜索」的节点开始进行深度优先搜索。
我们将当前搜索的节点 u标记为「搜索中」,遍历该节点的每一个相邻节点 v:
如果 v为「未搜索」,那么我们开始搜索 v,待搜索完成回溯到 u;
如果 v为「搜索中」,那么我们就找到了图中的一个环,因此是不存在拓扑排序的;
如果 v为「已完成」,那么说明 v已经在栈中了,而 u还不在栈中,因此 u无论何时入栈都不会影响到 (u,v)之前的拓扑关系,以及不用进行任何操作。
当 u的所有相邻节点都为「已完成」时,我们将 u放入栈中,并将其标记为「已完成」。
在整个深度优先搜索的过程结束后,如果我们没有找到图中的环,那么栈中存储这所有的 n个节点,从栈顶到栈底的顺序即为一种拓扑排序。
下面的幻灯片给出了深度优先搜索的可视化流程。图中的「白色」「黄色」「绿色」节点分别表示「未搜索」「搜索中」「已完成」的状态。
方法二: 广度优先搜索
思路
方法一的深度优先搜索是一种「逆向思维」:最先被放入栈中的节点是在拓扑排序中最后面的节点。我们也可以使用正向思维,顺序地生成拓扑排序,这种方法也更加直观。
我们考虑拓扑排序中最前面的节点,该节点一定不会有任何入边,也就是它没有任何的先修课程要求。当我们将一个节点加入答案中后,我们就可以移除它的所有出边,代表着它的相邻节点少了一门先修课程的要求。如果某个相邻节点变成了「没有任何入边的节点」,那么就代表着这门课可以开始学习了。按照这样的流程,我们不断地将没有入边的节点加入答案,直到答案中包含所有的节点(得到了一种拓扑排序)或者不存在没有入边的节点(图中包含环)。
上面的想法类似于广度优先搜索,因此我们可以将广度优先搜索的流程与拓扑排序的求解联系起来。
算法
我们使用一个队列来进行广度优先搜索。初始时,所有入度为 000 的节点都被放入队列中,它们就是可以作为拓扑排序最前面的节点,并且它们之间的相对顺序是无关紧要的。
在广度优先搜索的每一步中,我们取出队首的节点 u:
我们将 u放入答案中;
我们移除 u的所有出边,也就是将 u的所有相邻节点的入度减少 1。如果某个相邻节点 v 的入度变为 0,那么我们就将 v放入队列中。
在广度优先搜索的过程结束后。如果答案中包含了这 n个节点,那么我们就找到了一种拓扑排序,否则说明图中存在环,也就不存在拓扑排序了。
深度优先搜索
class Solution {
public:
vector<vector<int>> redges;
vector<int> visited;
bool valid = true;
void dfs(int v) {
visited[v] = 1;
for(const auto& neighbor : redges[v]) {
if(visited[neighbor] == 0) {
dfs(neighbor);
if(!valid) {
return;
}
} else if(visited[neighbor] == 1) {
valid = false;
return;
}
}
visited[v] = 2;
}
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
redges.resize(numCourses);
visited.resize(numCourses, 0);
for(const auto& v : prerequisites) {
redges[v[1]].push_back(v[0]);
}
for(int i = 0; i < numCourses; ++i) {
if(!visited[i] && valid) {
dfs(i);
}
}
return valid;
}
};
广度优先搜索
class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> rgraph(numCourses);
vector<int> in(numCourses);
queue<int> que;
for(auto& v : prerequisites) {
rgraph[v[1]].push_back(v[0]);
++in[v[0]];
}
for(int i = 0; i < numCourses; ++i) {
if(in[i] == 0) {
que.push(i);
}
}
int visited = 0;
while(!que.empty()) {
int v = que.front();
que.pop();
++visited;
for(auto& neighbor : rgraph[v]) {
--in[neighbor];
if(in[neighbor] == 0) {
que.push(neighbor);
}
}
}
return visited == numCourses;
}
};
时间复杂度分析
时间复杂度: O(n+m),其中 nnn 为课程数,m为先修课程的要求数。这其实就是对图进行深度优先搜索的时间复杂度。
空间复杂度: O(n+m)。题目中是以列表形式给出的先修课程关系,为了对图进行深度优先搜索,我们需要存储成邻接表的形式,空间复杂度为 O(n+m)。在深度优先搜索的过程中,我们需要最多 O(n)的栈空间(递归)进行深度优先搜索,因此总空间复杂度为 O(n+m)。
时间复杂度: O(n+m),其中 n为课程数,m为先修课程的要求数。这其实就是对图进行广度优先搜索的时间复杂度。
空间复杂度: O(n+m)。题目中是以列表形式给出的先修课程关系,为了对图进行广度优先搜索,我们需要存储成邻接表的形式,空间复杂度为 O(n+m)。在广度优先搜索的过程中,我们需要最多 O(n) 的队列空间(迭代)进行广度优先搜索。因此总空间复杂度为 O(n+m)。