SLAM
ggggeekkk
爬到山顶,才能看到更美的风景!
展开
-
Cartographer学习
谷歌Cartographer学习(1)-快速安装测试(转载)转载自谷歌Cartographer学习(1)-快速安装测试代码放到个人github上,https://github.com/hitcm/如下,需要安装3个软件包,ceres solver、cartographer和cartographer_ros1.首先安装ceres solver,选择的版本是1.11,路径随意。git clone ht...转载 2018-04-19 14:19:35 · 570 阅读 · 0 评论 -
机器人运动估计系列(一)——基础介绍
机器人运动估计系列(一)——基础介绍作为航空航天类专业毕业,马上要入机器人坑、直博坑的小本科生,要来写这样一个系列的文章,我感到诚惶诚恐。不过,人还是得有一些追求的,写这样一系列文章很难,但是相信对我自己的提升也会不少。当然,作为一名资深小白,出点错误、理解得不透彻的情况很有可能会在这个系列的文章中屡屡出现,到时候还望各位看官不吝赐教。当然,我也将会在未来的学习过程不断勘误。1 什么是机器人的运...转载 2018-07-06 15:07:18 · 1337 阅读 · 1 评论 -
机器人运动估计系列(二)——运动学方程(上)
机器人运动估计系列(二)——运动学方程(上)前言在上一篇文章中,我们了解了用于表示机器人位置、速度的坐标系的定义,学习了如何表示姿态,也就是旋转的三种表达方式:旋转矩阵、欧拉角以及四元数。在这一节的第一部分中,我们将继续讨论在三种旋转表达之间互相转换的方法。之后,我们将以四麦轮小车以及四旋翼为例,推导二者的运动学模型,并分享一些我在学习过程中的一些心得体会。1 各旋转表达方式的转换1.1 欧拉角 ...转载 2018-07-06 15:08:07 · 3737 阅读 · 0 评论 -
机器人运动估计系列(番外篇)——从贝叶斯滤波到卡尔曼(上)
机器人运动估计系列(二)——运动学方程(上)转载 2018-07-06 15:08:44 · 532 阅读 · 0 评论 -
机器人运动估计系列(番外篇)——从贝叶斯滤波到卡尔曼(中)
机器人运动估计系列(番外篇)——从贝叶斯滤波到卡尔曼(中)上一篇文章里介绍了贝叶斯滤波的理论框架,知道了贝叶斯滤波假设了机器人的状态服从某个概率分布,并且知道了如何利用Bayes公式对其概率分布更新。然而,前面的内容仅仅是介绍了其完美的数学原理,实际计算起来却并不适用。在这篇文章中,就将介绍如何通过一系列假设去简化贝叶斯滤波的计算过程。我们将介绍卡尔曼滤波器、扩展卡尔曼滤波器以及无迹卡尔曼滤波器的...转载 2018-07-06 15:09:16 · 462 阅读 · 0 评论 -
无人驾驶高精度定位技术(1)-递归贝叶斯滤波
在随后的几篇文章中,陆续介绍一些无人驾驶汽车中高精定位相关的技术原理,包括贝叶斯滤波器(Bayes Filter)、直方图滤波器(Histogram Filter)、卡尔曼滤波(Kalman Filter)、粒子滤波(Particle Filter),这些算法也都是机器人技术中的基础算法。如图,开始机器人不知道自己在哪里,跟人在陌生的环境中一样,一脸茫然,觉得四周哪里都一样,对机器人来说就是在任何...转载 2018-07-06 15:12:02 · 2171 阅读 · 0 评论 -
无人驾驶高精度定位技术(2)-卡尔曼滤波
本节我们介绍机器人定位中技术中的卡尔曼滤波(Kalman Filter),卡尔曼滤波作为连续状态空间问题的一种解决方案,已经成功运用在火星登陆和自动导弹制导等领域。本质上卡尔曼滤波(Kalman Filter)是一置信度为正态分布的贝叶斯(Bayes Filter)滤波器,它的置信度可以表示为一个均值向量和协方差矩阵的形式,均值向量表示可能的状态,协方差矩阵表示该状态的不确定度。前提假设卡尔曼滤波...转载 2018-07-06 15:13:23 · 2969 阅读 · 0 评论 -
无人驾驶高精度定位技术(3)-粒子滤波
这是介绍机器人定位算法的第四篇-粒子滤波。相对之前提到的卡尔曼滤波,它没有线性高斯分布的假设;相对于直方图滤波,它不需要对状态空间进行区间划分。粒子滤波的思想粒子滤波算法采用很多粒子对置信度bel(x(t))进行近似,每个粒子都是对t时刻机器人实际状态的一个猜测。越接近t时刻的正确状态描述的粒子,生成的概率越大。粒子更新的过程类似于达尔文的自然选择机制,与当前Sensor测量状态越匹配的粒子,有更...转载 2018-07-06 15:14:11 · 1316 阅读 · 0 评论 -
关于VIO中IMU预积分的讲解
Why VIO转自:https://zhehangt.github.io/2019/03/23/SLAM/Basic/VIOInit/首先我们先简单回顾一下为什么要做VIO,以及为什么要做VIO初始化。我们知道单目相机在做SLAM的时候是缺乏实际的尺度信息的,而且尺度还会产生漂移。如果缺乏实际的尺度信息,此时的定位信息将很难进行实际的应用。在面对一些极端环境的时候或者突然运动过快的时候,...转载 2019-05-28 17:03:54 · 16494 阅读 · 6 评论 -
ROS导航包的应用
ROS导航包的应用接触ROS系统已经很久了,前段时间终于排除万难,利用ROS Navigation功能包集跑通了基于rplidar 的slam,把自己的一些相关经验可以搬到这里来,记录分享加交流。开发环境Ubuntu14.04+ROS indigo Navigation stack:amcl | base_local_planner | carrot_planner | clear_costmap...转载 2018-07-06 15:06:31 · 1050 阅读 · 1 评论 -
ros的navigation之———amcl(localization)应用详解
关于amclamcl的英文全称是adaptive Monte Carlo localization,其实就是蒙特卡洛定位方法的一种升级版,使用自适应的KLD方法来更新粒子,这里不再多说(主要我也不熟),有兴趣的可以去看:KLD。 而mcl(蒙特卡洛定位)法使用的是粒子滤波的方法来进行定位的。而粒子滤波很粗浅的说就是一开始在地图空间很均匀的撒一把粒子,然后通过获取机器人的motion来移动粒子,比如...转载 2018-07-06 14:10:15 · 3342 阅读 · 0 评论 -
解决Ubuntu系统启动出现黑屏及光标闪动现象
问问题描述发生时间:2018年4月5日系统版本:Ubuntu16.04和win10双系统安装方法:完完全全按照百度经验进行安装问题描述:安装完成重启之后,出现了黑屏现象,而且屏幕左上角一直有白色光标闪动,等了很久没有变化。解决方法1、将刚刚安装系统用过的Ubuntu启动盘插在电脑上,电脑开机,从这个启动盘启动,方法和安装系统时一样;2、这次不是选在安装Ubuntu,而是选择试用Ubuntu;3、进...转载 2018-04-19 22:42:13 · 21186 阅读 · 0 评论 -
导航和路径规划
导航技术前言: 导航技术的移动机器人技术的核心和关键技术。自主移动机器人的导航就是让机器人可以自主按照内部预定的信息,或者依据传感器获取外部环境进行相应的引导,从而规划出一条适合机器人在环境中行走的路径。定位,就是机器人通过已经观测到的环境信息,结合自身已知的状态进行准确的极端出自身的位姿信息。室内移动机器人导航框架图: 、 导航过程首先要获得相关的地图信息,然后进行路径规划,最后发送数据给机器人...转载 2018-06-22 15:30:33 · 8917 阅读 · 0 评论 -
最小二乘法 来龙去脉
最小二乘是每个上过大学的同学都接触过的概念与知识点(当然可能纯文科的同学没接触过,但是一般纯文科的同学也不会看这篇文章好像)。最小二乘理论其实很简单,用途也很广泛。但是每次说到最小二乘,总感觉差了点什么似的,好像对于最小二乘的前世今生没有一个特别详细与系统的了解。so,本博主趁着周末的时间,赶紧给详细整理整理,力争把最小二乘是个什么鬼做一个特别详细的说明,争取让学英语学中文学历史学画画唱歌的同学都...转载 2018-07-10 10:02:53 · 514 阅读 · 0 评论 -
路径规划简介
前言:真实世界中人类的路径规划是对记忆信息和实时感知信息综合分析的过程,在虚拟技术中属于行为控制层级的技术。一,机器人路径规划分类: 1.全局路径规划(环境完全已知) 2.局部路径规划(环境未知或部分未知,通过感知实时获取环境信息) 另外环境又分静态与动态,所以任何路径规划问题均可细分为如下四类之一: 1)全局静态环境路径规划:构型空间法,自由空间法,栅格法...转载 2018-07-04 09:50:51 · 8460 阅读 · 0 评论 -
基于粒子滤波的物体跟踪
基于粒子滤波的物体跟踪http://v.youku.com/v_show/id_XMTc1NDQ2ODky.html一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去。一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu/~hess/)实现的这个粒子滤波。从代码入手,一下子就明白了粒子滤波的原理。根据维基百科上对粒子滤波的...转载 2018-07-11 14:50:10 · 988 阅读 · 0 评论 -
一个例子搞清楚(先验分布/后验分布/似然估计)
一个例子搞清楚(先验分布/后验分布/似然估计)preface: 无论是《通信原理》、《信息论》、《信道编码》还是《概率与统计理论》,或者在现在流行的《模式识别》和《Machine Learning》中总会遇到这么几个概念:先验分布/后验分布/似然估计。如果大家不熟悉这几个词,相信大家熟知贝叶斯公式,该公式涉及到了以上几个概念。但是学完本科课程,也会算题,就是在实际情境中总感觉理不清这几个概念的关...转载 2018-07-12 17:29:13 · 2771 阅读 · 1 评论 -
ROS Navigation-----costmap_2d简介
这个包提供了一种2D代价地图的实现方案,该方案利用输入传感器数据,构建数据2D或者3D(依赖于是否使用基于voxel的实现)占用珊格,以及基于占用珊格和用户定义膨胀半径的2D代价地图的膨胀代价。 此外,该包也支持利用map_server初始化代价地图,支持滚动窗口的代价地图,支持参数化订阅和配置传感器主题。1 概述注意: 在上图中,红色cell代表的是代价地图中的障碍,蓝色cell代表的是通过机器...转载 2018-07-06 13:54:01 · 1495 阅读 · 1 评论