AT_code_festival_relay_j题解

题目大意

n n n 个白色石头以相等的间隔排列。相邻石头之间的距离为 1 1 1。两个玩家用这块石头玩游戏。每个玩家轮流选择白色石头并将其变为黑色。但是,不能从前一回合变黑的石头中选择距离在 k k k 内的石头。不能选择白色石头的玩家输了。在这个游戏中,双方采用最优策略,询问先手必胜或者后手必胜。

思路

首先,如果 k k k ≥ \geq 2 n \dfrac{2}{n} n2,那么第一步先手下最中间的位置就赢了( k k k ≥ \geq 2 n \dfrac{2}{n} n2,所以最中间的位置往左和往右都放不了)。

如果 k k k < < < 2 n \dfrac{2}{n} n2,那么就相当于每一个位置都能放置。这样如果 n   m o d   2 = 1 n \bmod 2 = 1 nmod2=1,那么先手赢,否则后手赢。

代码

#include<bits/stdc++.h>
using namespace std;
int n,k;
int main() {
	scanf("%d%d",&n,&k);
	if(k >= n / 2 or n % 2) printf("first\n");
	else printf("second\n");
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值