题目大意
n n n 个白色石头以相等的间隔排列。相邻石头之间的距离为 1 1 1。两个玩家用这块石头玩游戏。每个玩家轮流选择白色石头并将其变为黑色。但是,不能从前一回合变黑的石头中选择距离在 k k k 内的石头。不能选择白色石头的玩家输了。在这个游戏中,双方采用最优策略,询问先手必胜或者后手必胜。
思路
首先,如果 k k k ≥ \geq ≥ 2 n \dfrac{2}{n} n2,那么第一步先手下最中间的位置就赢了( k k k ≥ \geq ≥ 2 n \dfrac{2}{n} n2,所以最中间的位置往左和往右都放不了)。
如果 k k k < < < 2 n \dfrac{2}{n} n2,那么就相当于每一个位置都能放置。这样如果 n m o d 2 = 1 n \bmod 2 = 1 nmod2=1,那么先手赢,否则后手赢。
代码
#include<bits/stdc++.h>
using namespace std;
int n,k;
int main() {
scanf("%d%d",&n,&k);
if(k >= n / 2 or n % 2) printf("first\n");
else printf("second\n");
}