【动态规划、dp】P1064 [NOIP 2006 提高组] 金明的预算方案

题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 nnn 元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件附件
电脑打印机,扫描仪
书柜图书
书桌台灯,文具
工作椅

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 000 个、111 个或 222 个附件。每个附件对应一个主件,附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的 nnn 元。于是,他把每件物品规定了一个重要度,分为 555 等:用整数 1∼51 \sim 515 表示,第 555 等最重要。他还从因特网上查到了每件物品的价格(都是 101010 元的整数倍)。他希望在不超过 nnn 元的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第 jjj 件物品的价格为 vjv_jvj,重要度为 wjw_jwj,共选中了 kkk 件物品,编号依次为 j1,j2,…,jkj_1,j_2,\dots,j_kj1,j2,,jk,则所求的总和为:

vj1×wj1+vj2×wj2+⋯+vjk×wjkv_{j_1} \times w_{j_1}+v_{j_2} \times w_{j_2}+ \dots +v_{j_k} \times w_{j_k}vj1×wj1+vj2×wj2++vjk×wjk

请你帮助金明设计一个满足要求的购物单。

输入格式

第一行有两个整数,分别表示总钱数 nnn 和希望购买的物品个数 mmm

222 到第 (m+1)(m + 1)(m+1) 行,每行三个整数,第 (i+1)(i + 1)(i+1) 行的整数 viv_ivipip_ipiqiq_iqi 分别表示第 iii 件物品的价格、重要度以及它对应的的主件。如果 qi=0q_i=0qi=0,表示该物品本身是主件。

输入 #1

1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0

输出 #1

2200

数据规模与约定

对于全部的测试点,保证 1≤n≤3.2×1041 \leq n \leq 3.2 \times 10^41n3.2×1041≤m≤601 \leq m \leq 601m600≤vi≤1040 \leq v_i \leq 10^40vi1041≤pi≤51 \leq p_i \leq 51pi50≤qi≤m0 \leq q_i \leq m0qim,答案不超过 2×1052 \times 10^52×105

NOIP 2006 提高组 第二题

思路

首先,由于每一个主件只带不超过 222 个附件,买一种主件(及其附件)无非以下几种情况:不买,只买主件,买 1 附件,买 2 附件,将输入重新整理成结构体的形式,代码如下,方便后续处理:

struct item{
	int num,p;//主件1
	//这两行可能会有警告,但不影响代码运行
	int num_1 = 0,p_1 = 0;//附件1
	int num_2 = 0,p_2 = 0;//附件2
}node[65];
int hash[65],cnt = 0;//如果在c++14等环境下可能报错,建议换一个数组名字或者用c++98

输入的时候有一个坑的地方:附件不一定比主件先输入,故要按照下面的方法处理。

scanf("%lld %lld",&n,&m),n /= 10;
int v[65],p[65],q[65];
for(int i = 1;i <= m;i++) scanf("%lld %lld %lld",&v[i],&p[i],&q[i]),v[i] /= 10;
for(int i = 1;i <= m;i++) {
	if(q[i] != 0) continue;
	hash[i] = ++cnt;
	node[cnt].num = v[i],node[cnt].p = p[i];
	
}
for(int i = 1;i <= m;i++) {
	if(q[i] == 0) continue;
	int own = hash[q[i]];
	if(node[own].num_1 == 0) node[own].num_1 = v[i],node[own].p_1 = p[i];
	else node[own].num_2 = v[i],node[own].p_2 = p[i];
	}

dpi,jdp_{i,j}dpi,j 为买前 iii 个物品总花费 jjj 元情况,转移正如上文所说,,可以由这几种转移:

  • dpi−1,jdp_{i-1,j}dpi1,j
  • dpi−1,j−num+num×p(j≥num)dp_{i-1,j-num}+num\times p(j\geq num)dpi1,jnum+num×p(jnum)
  • dpi−1,j−num−num1+num×p+num1×p1(j≥num+num1)dp_{i-1,j-num-num_1}+num\times p + num_1 \times p_1(j\geq num+num_1)dpi1,jnumnum1+num×p+num1×p1(jnum+num1)
  • dpi−1,j−num−num2+num×p+num2×p2(j≥num+num2)dp_{i-1,j-num-num_2}+num\times p + num_2 \times p_2(j\geq num+num_2)dpi1,jnumnum2+num×p+num2×p2(jnum+num2)
  • dpi−1,j−num−num1−num2+num×p+num1×p1+num2×p2(j≥num+num1+num2)dp_{i-1,j-num-num_1-num_2}+num\times p + num_1\times p_1 +num_2 \times p_2(j\geq num+num_1+num_2)dpi1,jnumnum1num2+num×p+num1×p1+num2×p2(jnum+num1+num2)

代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,m;
struct item{
	int num,p;
	int num_1 = 0,p_1 = 0;
	int num_2 = 0,p_2 = 0;
}node[65];
int hash[65],cnt = 0;
int dp[65][3205];
signed main() {
	scanf("%lld %lld",&n,&m),n /= 10;
	int v[65],p[65],q[65];
	for(int i = 1;i <= m;i++) scanf("%lld %lld %lld",&v[i],&p[i],&q[i]),v[i] /= 10;
	for(int i = 1;i <= m;i++) {
		if(q[i] != 0) continue;
		hash[i] = ++cnt;
		node[cnt].num = v[i],node[cnt].p = p[i];
		
	}
	for(int i = 1;i <= m;i++) {
		if(q[i] == 0) continue;
		int own = hash[q[i]];
		if(node[own].num_1 == 0) node[own].num_1 = v[i],node[own].p_1 = p[i];
		else node[own].num_2 = v[i],node[own].p_2 = p[i];
	}
	for(int i = 1;i <= cnt;i++) {
		for(int j = 1;j <= n;j++) {
			dp[i][j] = dp[i - 1][j];
			if(j >= node[i].num) dp[i][j] = max(dp[i][j],dp[i - 1][j - node[i].num] + node[i].num * node[i].p);
			if(j >= node[i].num + node[i].num_1) dp[i][j] = max(dp[i][j],dp[i - 1][j - node[i].num - node[i].num_1] + node[i].num_1 * node[i].p_1 + node[i].num * node[i].p);
			if(j >= node[i].num + node[i].num_2) dp[i][j] = max(dp[i][j],dp[i - 1][j - node[i].num - node[i].num_2] + node[i].num_2 * node[i].p_2 + node[i].num * node[i].p);
			if(j >= node[i].num + node[i].num_1 + node[i].num_2) dp[i][j] = max(dp[i][j],dp[i - 1][j - node[i].num - node[i].num_1 - node[i].num_2] + node[i].num_1 * node[i].p_1 + node[i].num_2 * node[i].p_2 + node[i].num * node[i].p);
		}
	}
	printf("%lld\n",dp[cnt][n] * 10);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值