题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 nnn 元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 | 附件 |
---|---|
电脑 | 打印机,扫描仪 |
书柜 | 图书 |
书桌 | 台灯,文具 |
工作椅 | 无 |
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 000 个、111 个或 222 个附件。每个附件对应一个主件,附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的 nnn 元。于是,他把每件物品规定了一个重要度,分为 555 等:用整数 1∼51 \sim 51∼5 表示,第 555 等最重要。他还从因特网上查到了每件物品的价格(都是 101010 元的整数倍)。他希望在不超过 nnn 元的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第 jjj 件物品的价格为 vjv_jvj,重要度为 wjw_jwj,共选中了 kkk 件物品,编号依次为 j1,j2,…,jkj_1,j_2,\dots,j_kj1,j2,…,jk,则所求的总和为:
vj1×wj1+vj2×wj2+⋯+vjk×wjkv_{j_1} \times w_{j_1}+v_{j_2} \times w_{j_2}+ \dots +v_{j_k} \times w_{j_k}vj1×wj1+vj2×wj2+⋯+vjk×wjk
请你帮助金明设计一个满足要求的购物单。
输入格式
第一行有两个整数,分别表示总钱数 nnn 和希望购买的物品个数 mmm。
第 222 到第 (m+1)(m + 1)(m+1) 行,每行三个整数,第 (i+1)(i + 1)(i+1) 行的整数 viv_ivi,pip_ipi,qiq_iqi 分别表示第 iii 件物品的价格、重要度以及它对应的的主件。如果 qi=0q_i=0qi=0,表示该物品本身是主件。
输入 #1
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出 #1
2200
数据规模与约定
对于全部的测试点,保证 1≤n≤3.2×1041 \leq n \leq 3.2 \times 10^41≤n≤3.2×104,1≤m≤601 \leq m \leq 601≤m≤60,0≤vi≤1040 \leq v_i \leq 10^40≤vi≤104,1≤pi≤51 \leq p_i \leq 51≤pi≤5,0≤qi≤m0 \leq q_i \leq m0≤qi≤m,答案不超过 2×1052 \times 10^52×105。
NOIP 2006 提高组 第二题
思路
首先,由于每一个主件只带不超过 222 个附件,买一种主件(及其附件)无非以下几种情况:不买,只买主件,买 1 附件,买 2 附件,将输入重新整理成结构体的形式,代码如下,方便后续处理:
struct item{
int num,p;//主件1
//这两行可能会有警告,但不影响代码运行
int num_1 = 0,p_1 = 0;//附件1
int num_2 = 0,p_2 = 0;//附件2
}node[65];
int hash[65],cnt = 0;//如果在c++14等环境下可能报错,建议换一个数组名字或者用c++98
输入的时候有一个坑的地方:附件不一定比主件先输入,故要按照下面的方法处理。
scanf("%lld %lld",&n,&m),n /= 10;
int v[65],p[65],q[65];
for(int i = 1;i <= m;i++) scanf("%lld %lld %lld",&v[i],&p[i],&q[i]),v[i] /= 10;
for(int i = 1;i <= m;i++) {
if(q[i] != 0) continue;
hash[i] = ++cnt;
node[cnt].num = v[i],node[cnt].p = p[i];
}
for(int i = 1;i <= m;i++) {
if(q[i] == 0) continue;
int own = hash[q[i]];
if(node[own].num_1 == 0) node[own].num_1 = v[i],node[own].p_1 = p[i];
else node[own].num_2 = v[i],node[own].p_2 = p[i];
}
令 dpi,jdp_{i,j}dpi,j 为买前 iii 个物品总花费 jjj 元情况,转移正如上文所说,,可以由这几种转移:
- dpi−1,jdp_{i-1,j}dpi−1,j
- dpi−1,j−num+num×p(j≥num)dp_{i-1,j-num}+num\times p(j\geq num)dpi−1,j−num+num×p(j≥num)
- dpi−1,j−num−num1+num×p+num1×p1(j≥num+num1)dp_{i-1,j-num-num_1}+num\times p + num_1 \times p_1(j\geq num+num_1)dpi−1,j−num−num1+num×p+num1×p1(j≥num+num1)
- dpi−1,j−num−num2+num×p+num2×p2(j≥num+num2)dp_{i-1,j-num-num_2}+num\times p + num_2 \times p_2(j\geq num+num_2)dpi−1,j−num−num2+num×p+num2×p2(j≥num+num2)
- dpi−1,j−num−num1−num2+num×p+num1×p1+num2×p2(j≥num+num1+num2)dp_{i-1,j-num-num_1-num_2}+num\times p + num_1\times p_1 +num_2 \times p_2(j\geq num+num_1+num_2)dpi−1,j−num−num1−num2+num×p+num1×p1+num2×p2(j≥num+num1+num2)
代码
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,m;
struct item{
int num,p;
int num_1 = 0,p_1 = 0;
int num_2 = 0,p_2 = 0;
}node[65];
int hash[65],cnt = 0;
int dp[65][3205];
signed main() {
scanf("%lld %lld",&n,&m),n /= 10;
int v[65],p[65],q[65];
for(int i = 1;i <= m;i++) scanf("%lld %lld %lld",&v[i],&p[i],&q[i]),v[i] /= 10;
for(int i = 1;i <= m;i++) {
if(q[i] != 0) continue;
hash[i] = ++cnt;
node[cnt].num = v[i],node[cnt].p = p[i];
}
for(int i = 1;i <= m;i++) {
if(q[i] == 0) continue;
int own = hash[q[i]];
if(node[own].num_1 == 0) node[own].num_1 = v[i],node[own].p_1 = p[i];
else node[own].num_2 = v[i],node[own].p_2 = p[i];
}
for(int i = 1;i <= cnt;i++) {
for(int j = 1;j <= n;j++) {
dp[i][j] = dp[i - 1][j];
if(j >= node[i].num) dp[i][j] = max(dp[i][j],dp[i - 1][j - node[i].num] + node[i].num * node[i].p);
if(j >= node[i].num + node[i].num_1) dp[i][j] = max(dp[i][j],dp[i - 1][j - node[i].num - node[i].num_1] + node[i].num_1 * node[i].p_1 + node[i].num * node[i].p);
if(j >= node[i].num + node[i].num_2) dp[i][j] = max(dp[i][j],dp[i - 1][j - node[i].num - node[i].num_2] + node[i].num_2 * node[i].p_2 + node[i].num * node[i].p);
if(j >= node[i].num + node[i].num_1 + node[i].num_2) dp[i][j] = max(dp[i][j],dp[i - 1][j - node[i].num - node[i].num_1 - node[i].num_2] + node[i].num_1 * node[i].p_1 + node[i].num_2 * node[i].p_2 + node[i].num * node[i].p);
}
}
printf("%lld\n",dp[cnt][n] * 10);
return 0;
}