【1.2】二次方程根与系数关系(韦达定理)

韦达定理

简介

一般的,若方程 a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0 能写成 a ( x − x 1 ) ( x − x 2 ) a(x-x_1)(x-x_2) a(xx1)(xx2) 的形式,则 x 1 , x 2 x_1,x_2 x1,x2 为原方程的解(来自上一讲

展开 a ( x − x 1 ) ( x − x 2 ) a(x-x_1)(x-x_2) a(xx1)(xx2),原方程即为于 a x 2 − a ( x 1 + x 2 ) x + a x 1 x 2 = 0 ax^2-a(x_1+x_2)x+ax_1x_2=0 ax2a(x1+x2)x+ax1x2=0

又因为该方程与 a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0 等价,所以两者对应系数相等

所以我们有

x 1 + x 2 = − b a , x 1 x 2 = c a x_1+x_2=-\dfrac{b}{a},x_1x_2=\dfrac{c}{a} x1+x2=ab,x1x2=ac

对于高次方程,我们依然有类似的韦达定理。

在这里插入图片描述
由此可见,韦达定理是由因式分解而来,而非公式法加上惊人的注意力(其实还是可以注意到的)得来的。如果题目中给出了二次方程或形如

{ a b = p a + b = q \begin{cases} ab=p \\ a+b=q \end{cases} {ab=pa+b=q

的式子时,要联想到韦达定理。

基础应用(中等)

例1:解方程
{ a b = 1 a + b = − 2 \begin{cases} ab=1 \\ a+b=-2 \end{cases} {ab=1a+b=2

解:a,b 即为方程 x 2 + 2 x + 1 = 0 x^2+2x+1=0 x2+2x+1=0 两根。

{ a = − 1 b = − 1 \begin{cases} a=-1 \\ b=-1 \end{cases} {a=1b=1

对于给定二次方程一般难以求值,求给定二次方程根有关代数式时,会采用韦达定理。并且不止 a + b , a b a+b,ab a+b,ab,我们事实上还可处理 a 2 + b 2 = ( a + b ) 2 − 2 a b , ∣ a − b ∣ = ( a + b ) 2 − 4 a b a^2+b^2=(a+b)^2-2ab,|a-b|=\sqrt{(a+b)^2-4ab} a2+b2=(a+b)22ab,ab=(a+b)24ab 的值。

例2:已知 x 2 + 5 x + 3 = 0 x^2+5x+3=0 x2+5x+3=0 两根为 a , b a,b a,b,求 ( a − 1 ) ( b − 1 ) (a-1)(b-1) (a1)(b1)
解:有 a + b = − 5 , a b = 3 a+b=-5,ab=3 a+b=5,ab=3
原式 = a b − ( a + b ) + 1 = 3 + 5 + 1 = 9 =ab-(a+b)+1=3+5+1=9 =ab(a+b)+1=3+5+1=9

例3:在例2条件下求 a b + b a \sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}} ba +ab 值(难)

( a b + b a ) 2 = a 2 + b 2 a b + 2 = ( a + b ) 2 a b = 25 3 (\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}})^2=\dfrac{a^2+b^2}{ab}+2=\dfrac{(a+b)^2}{ab}=\dfrac{25}{3} (ba +ab )2=aba2+b2+2=ab(a+b)2=325

故原式= 25 3 = 5 3 3 \sqrt{\dfrac{25}{3}}=\dfrac{5\sqrt3}{3} 325 =353

韦达定理处理两根分布情况(难)

例4:方程 x 2 + 2 x + c x^2+2x+c x2+2x+c 两根何时异号?何时均小于0?
解:

由方程有实数根有:

Δ = 4 − 4 c > 0 , c < 1 \varDelta=4-4c>0,c<1 Δ=44c>0,c<1

若方程两根异号,则有 x 1 x 2 = c < 0 x_1x_2=c<0 x1x2=c<0

若两根均小于0,则要求

{ x 1 + x 2 < 0 x 1 x 2 > 0 \begin{cases} x_1+x_2<0 \\ x_1x_2>0 \end{cases} {x1+x2<0x1x2>0

0 < c < 1 0<c<1 0<c<1

一般的,对于两根一个大于 p p p,一根小于 p p p,可用
{ Δ ≥ 0 ( x 1 − p ) ( x 2 − p ) < 0 \begin{cases} \varDelta \geq0 \\ (x_1-p)(x_2-p)<0 \end{cases} {Δ0(x1p)(x2p)<0

列出不等式解决。

对于两根都大于 p p p,用

{ Δ ≥ 0 ( x 1 − p ) ( x 2 − p ) > 0 ( x 1 − p ) + ( x 2 − p ) > 0 \begin{cases} \varDelta \geq0 \\ (x_1-p)(x_2-p)>0\\ (x_1-p)+(x_2-p)>0 \end{cases} Δ0(x1p)(x2p)>0(x1p)+(x2p)>0

同理,对于两根都小于 p p p,用

{ Δ ≥ 0 ( x 1 − p ) ( x 2 − p ) > 0 ( x 1 − p ) + ( x 2 − p ) < 0 \begin{cases} \varDelta \geq0 \\ (x_1-p)(x_2-p)>0\\ (x_1-p)+(x_2-p)<0 \end{cases} Δ0(x1p)(x2p)>0(x1p)+(x2p)<0

此处可参见李惟峰老师所著《一次函数与二次函数》P37-38 例6,此处不再展开讲。此书应该是我见过二次函数书籍内最详细且通俗的书籍(小蓝本第3本),购买的同学着重刷2-5章。(华师大这套书应该算是初中数学教辅天花板了)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值