韦达定理
简介
一般的,若方程 a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0 能写成 a ( x − x 1 ) ( x − x 2 ) a(x-x_1)(x-x_2) a(x−x1)(x−x2) 的形式,则 x 1 , x 2 x_1,x_2 x1,x2 为原方程的解(来自上一讲)
展开 a ( x − x 1 ) ( x − x 2 ) a(x-x_1)(x-x_2) a(x−x1)(x−x2),原方程即为于 a x 2 − a ( x 1 + x 2 ) x + a x 1 x 2 = 0 ax^2-a(x_1+x_2)x+ax_1x_2=0 ax2−a(x1+x2)x+ax1x2=0
又因为该方程与 a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0 等价,所以两者对应系数相等。
所以我们有
x 1 + x 2 = − b a , x 1 x 2 = c a x_1+x_2=-\dfrac{b}{a},x_1x_2=\dfrac{c}{a} x1+x2=−ab,x1x2=ac。
对于高次方程,我们依然有类似的韦达定理。
由此可见,韦达定理是由因式分解而来,而非公式法加上惊人的注意力(其实还是可以注意到的)得来的。如果题目中给出了二次方程或形如
{ a b = p a + b = q \begin{cases} ab=p \\ a+b=q \end{cases} {ab=pa+b=q
的式子时,要联想到韦达定理。
基础应用(中等)
例1:解方程
{
a
b
=
1
a
+
b
=
−
2
\begin{cases} ab=1 \\ a+b=-2 \end{cases}
{ab=1a+b=−2
解:a,b 即为方程
x
2
+
2
x
+
1
=
0
x^2+2x+1=0
x2+2x+1=0 两根。
故
{
a
=
−
1
b
=
−
1
\begin{cases} a=-1 \\ b=-1 \end{cases}
{a=−1b=−1
对于给定二次方程一般难以求值,求给定二次方程根有关代数式时,会采用韦达定理。并且不止 a + b , a b a+b,ab a+b,ab,我们事实上还可处理 a 2 + b 2 = ( a + b ) 2 − 2 a b , ∣ a − b ∣ = ( a + b ) 2 − 4 a b a^2+b^2=(a+b)^2-2ab,|a-b|=\sqrt{(a+b)^2-4ab} a2+b2=(a+b)2−2ab,∣a−b∣=(a+b)2−4ab 的值。
例2:已知
x
2
+
5
x
+
3
=
0
x^2+5x+3=0
x2+5x+3=0 两根为
a
,
b
a,b
a,b,求
(
a
−
1
)
(
b
−
1
)
(a-1)(b-1)
(a−1)(b−1) 值
解:有
a
+
b
=
−
5
,
a
b
=
3
a+b=-5,ab=3
a+b=−5,ab=3
原式
=
a
b
−
(
a
+
b
)
+
1
=
3
+
5
+
1
=
9
=ab-(a+b)+1=3+5+1=9
=ab−(a+b)+1=3+5+1=9
例3:在例2条件下求 a b + b a \sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}} ba+ab 值(难)
( a b + b a ) 2 = a 2 + b 2 a b + 2 = ( a + b ) 2 a b = 25 3 (\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{b}{a}})^2=\dfrac{a^2+b^2}{ab}+2=\dfrac{(a+b)^2}{ab}=\dfrac{25}{3} (ba+ab)2=aba2+b2+2=ab(a+b)2=325
故原式= 25 3 = 5 3 3 \sqrt{\dfrac{25}{3}}=\dfrac{5\sqrt3}{3} 325=353
韦达定理处理两根分布情况(难)
例4:方程
x
2
+
2
x
+
c
x^2+2x+c
x2+2x+c 两根何时异号?何时均小于0?
解:
由方程有实数根有:
Δ = 4 − 4 c > 0 , c < 1 \varDelta=4-4c>0,c<1 Δ=4−4c>0,c<1
若方程两根异号,则有 x 1 x 2 = c < 0 x_1x_2=c<0 x1x2=c<0
若两根均小于0,则要求
{ x 1 + x 2 < 0 x 1 x 2 > 0 \begin{cases} x_1+x_2<0 \\ x_1x_2>0 \end{cases} {x1+x2<0x1x2>0
故 0 < c < 1 0<c<1 0<c<1
一般的,对于两根一个大于
p
p
p,一根小于
p
p
p,可用
{
Δ
≥
0
(
x
1
−
p
)
(
x
2
−
p
)
<
0
\begin{cases} \varDelta \geq0 \\ (x_1-p)(x_2-p)<0 \end{cases}
{Δ≥0(x1−p)(x2−p)<0
列出不等式解决。
对于两根都大于 p p p,用
{ Δ ≥ 0 ( x 1 − p ) ( x 2 − p ) > 0 ( x 1 − p ) + ( x 2 − p ) > 0 \begin{cases} \varDelta \geq0 \\ (x_1-p)(x_2-p)>0\\ (x_1-p)+(x_2-p)>0 \end{cases} ⎩ ⎨ ⎧Δ≥0(x1−p)(x2−p)>0(x1−p)+(x2−p)>0
同理,对于两根都小于 p p p,用
{ Δ ≥ 0 ( x 1 − p ) ( x 2 − p ) > 0 ( x 1 − p ) + ( x 2 − p ) < 0 \begin{cases} \varDelta \geq0 \\ (x_1-p)(x_2-p)>0\\ (x_1-p)+(x_2-p)<0 \end{cases} ⎩ ⎨ ⎧Δ≥0(x1−p)(x2−p)>0(x1−p)+(x2−p)<0
此处可参见李惟峰老师所著《一次函数与二次函数》P37-38 例6,此处不再展开讲。此书应该是我见过二次函数书籍内最详细且通俗的书籍(小蓝本第3本),购买的同学着重刷2-5章。(华师大这套书应该算是初中数学教辅天花板了)