关于反卷积的简单例子,可以参照我的另外一篇文章:
http://blog.csdn.net/guvcolie/article/details/77529683
文章出处:http://blog.csdn.net/mao_xiao_feng/article/details/71713358
反卷积操作是卷积的反向
如果你随时都记住上面强调的重点,那你基本就理解一大半了,接下来通过一些函数的介绍为大家强化这个观念
conv2d_transpose(value, filter, output_shape, strides, padding="SAME", data_format="NHWC", name=None)
除去name参数用以指定该操作的name,与方法有关的一共六个参数: 第一个参数value:指需要做反卷积的输入图像,它要求是一个Tensor 第二个参数filter:卷积核,它要求是一个Tensor,具有[filter_height, filter_width, out_channels, in_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,卷积核个数,图像通道数] 第三个参数output_shape:反卷积操作输出的shape,细心的同学会发现卷积操作是没有这个参数的,那这个参数在这里有什么用呢?下面会解释这个问题 第四个参数strides:反卷积时在图像每一维的步长,这是一个一维的向量,长度4 第五个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式 第六个参数data_format:string类型的量,'NHWC'和'NCHW'其中之一,这是tensorflow新版本中新加的参数,它说明了value参数的数据格式。'NHWC'指tensorflow标准的数据格式[batch, height, width, in_channels],'NCHW'指Theano的数据格式,[batch, in_channels,height, width],当然默认值是'NHWC' 开始之前务必了解卷积的过程,参考我的另一篇文章:http://blog.csdn.net/mao_xiao_feng/article/details/53444333 首先定义一个单通道图和3个卷积核
先别着急!我们不直接用反卷积函数,而是再定义一些图
x2是6×6的3通道图,x3是5×5的3通道图 好了,接下来对x3做一次卷积操作所以返回的y2是一个单通道的图,如果你了解卷积过程,很容易看出来y2是[1,3,3,1]的Tensor,y2的结果如下:又一个很重要的部分!tf.nn.conv2d中的filter参数,是[filter_height, filter_width, in_channels, out_channels]的形式,而tf.nn.conv2d_transpose中的filter参数,是[filter_height, filter_width, out_channels,in_channels]的形式,注意in_channels和out_channels反过来了!因为两者互为反向,所以输入输出要调换位置
既然y2是卷积操作的返回值,那我们当然可以对它做反卷积,反卷积操作返回的Tensor,应该和x3的shape是一样的(不难理解,因为是卷积的反过程)好,现在返回的y3果然是[1,5,5,3]的Tensor,结果如下:这个结果是怎么得来的?可以用一张动图来说明,图片来源:反卷积的真正含义看起来,tf.nn.conv2d_transpose的output_shape似乎是多余的,因为知道了原图,卷积核,步长显然是可以推出输出图像大小的,那为什么要指定output_shape呢? 看这样一种情况:
我们把上面的x2也做卷积,获得shape为[1,3,3,1]的y4如下:[1,6,6,3]和[1,5,5,3]的图经过卷积得到了相同的大小,[1,3,3,1] 让我们再反过来看,那么[1,3,3,1]的图反卷积后得到什么呢?产生了两种情况。所以这里指定output_shape是有意义的,当然随意指定output_shape是不允许的,如下情况程序会报错:以上是stride为2的情况,为1时也类似,当卷积核大于原图时,默认用VALID方式(用SAME就无意义了)参考下图:
程序清单: