全局平均池化(Global Average Pooling,简称GAP)是一种常用于卷积神经网络(CNN)中的池化方法,特别是在图像分类等任务中。它的作用是通过对每个特征图(feature map)进行平均操作来减少数据的维度。
具体来说,GAP的操作过程如下:
-
输入:通常是一个经过卷积层处理的特征图,大小为 ( H × W × C )(其中 ( H ) 和 ( W ) 分别是特征图的高度和宽度,( C ) 是通道数)。
-
操作:对每个通道的特征图进行平均池化,将每个 ( H × W ) 的区域(即整个特征图)进行平均,最终得到一个大小为 ( 1 ×1 × C ) 的输出。
-
输出:经过GAP后,输出是一个具有 ( C ) 个元素的向量,每个元素对应一个通道的平均值。
GAP的优点:
- 减少参数数量:与传统的全连接层相比,GAP大大减少了网络的参数数量,因为它不需要学习每个特征的权重,而是简单地计算特征图的平均值。
- 避免过拟合:由于GAP减少了模型的复杂度,因此可以降低过拟合的风险。
- 提高计算效率:GAP消除了全连接层所需的复杂计算,减少了内存和计算资源的消耗。
应用:
在很多现代卷积神经网络中,特别是在一些经典的网络架构(如GoogLeNet、ResNet)中,GAP常常被用于替代全连接层,直接将卷积层输出的特征图转换为分类的概率分布。
参考文献:pytorch 学习 | 全局平均池化 global average pooling_全局平均池化pytorch-CSDN博客