关于Tensorflow数据的读取,有三种方法:
- 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据(一次一喂)。
- 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据(从文件流中自动读取)。
- 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。
将数据写入TfRecords文件
#! -*- coding: utf-8 -*-
import os
import tensorflow as tf
from PIL import Image
cwd = os.getcwd()
## 指定tfrecords格式的文件名,创建writer
writer = tf.python_io.TFRecordWriter("train.tfrecords")
## 比如当前目录下有3个文件夹ÿ