tensorflow中tfrecords格式的读写

本文介绍了在TensorFlow中利用TFRecords格式存储数据的方法,包括如何将数据写入TFRecords文件,以及使用tf.train.shuffle_batch从文件中随机读取数据的原理,强调了队列容量和最小淘汰数量对数据乱序的影响。
摘要由CSDN通过智能技术生成

关于Tensorflow数据的读取,有三种方法:

  • 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据(一次一喂)。
  • 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据(从文件流中自动读取)。
  • 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。


将数据写入TfRecords文件

#! -*- coding: utf-8 -*-

import os
import tensorflow as tf
from PIL import Image

cwd = os.getcwd()
## 指定tfrecords格式的文件名,创建writer
writer = tf.python_io.TFRecordWriter("train.tfrecords")
## 比如当前目录下有3个文件夹ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值