将数据归一化到任意区间范围的方法

版权声明:本文为博主原创文章,未经博主允许不得转载(pan_jinquan) https://blog.csdn.net/guyuealian/article/details/78845031

将数据归一化到任意区间范围的方法

   一般常见的数据归一化,是归一化到0~1,或者-1~1的区间,但在一些特殊场合下,我们需要根据实际情况归一化到其他任意区间,方法是:

    将数据归一化到[a,b]区间范围的方法:

(1)首先找到样本数据Y的最小值Min及最大值Max
(2)计算系数为:k=(b-a)/(Max-Min)
(3)得到归一化到[a,b]区间的数据:norY=a+k(Y-Min)

Matlab代码:

clc;clear all;close all;
%%
x=0:0.1:10;
y=(x-5).^2;%产生原始数据样本
figure
plot(x,y,'.-')
axis([0 10 0 26]);
grid on

%% 将数据归一化到[a,b]区间的方法
a=0.1;
b=0.5;
Ymax=max(y);%计算最大值
Ymin=min(y);%计算最小值
k=(b-a)/(Ymax-Ymin);
norY=a+k*(y-Ymin);
figure;
plot(x,norY,'.-')
axis([0 10 0 1]);
grid on

实质上,归一化的一般规范函数是:y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin

参考资料http://zjh776.iteye.com/blog/1972777 

下面给出简化的归一化到任意区间的方法函数:

function [ y ] = normalization( x,ymin,ymax )
%NORMALIZATION 将数据x归一化到任意区间[ymin,ymax]范围的方法
%   输入参数x:需要被归一化的数据
%   输入参数ymin:归一化的区间[ymin,ymax]下限
%   输入参数ymax:归一化的区间[ymin,ymax]上限
%   输出参数y:归一化到区间[ymin,ymax]的数据
xmax=max(x);%计算最大值
xmin=min(x);%计算最小值
y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;
end

Matlab里有一个归一化函数normalize,对矩阵是按列归一化的:

%按列归一化,任意归一化范围
function [Array_dst]=normalize(Array_src,ymin,ymax)
[l,r]=size(Array_src);
Bound=[];
for i=1:r
    Bound(1,i)=min(Array_src(:,i));
    Bound(2,i)=max(Array_src(:,i));
    if abs(Bound(1,i)-Bound(2,i))<0.000000001
        Bound(1,i)=0;
        Bound(2,i)=1;
    end
end

[m,n]=size(Array_src);
for i=1:m
    Array_dst(i,:)=ymin + (Array_src(i,:)-Bound(1,:))./(Bound(2,:)-Bound(1,:)).*( ymax - ymin );
end


OpenCV或者C++中可以这么实现:

cv::Mat Normalization(cv::Mat data,float Omin,float Omax) {
	double minv = 0.0, maxv = 0.0;
	minMaxIdx(data, &minv, &maxv);

	float *p= data.ptr<float>(0);
	int len = data.cols;
	cv::Mat dest(1, len, CV_32FC1);
	float *d = dest.ptr<float>(0);
	for (size_t i = 0; i < len; i++)
	{
		d[i] = (Omax - Omin)*(p[i] - minv)/ (maxv - minv) + Omin;;
	}
	return dest;
}

cv::Mat Normalization(cv::Mat data, float Imin, float Imax,float Omin, float Omax) {
	float *p = data.ptr<float>(0);
	int len = data.cols;
	cv::Mat dest(1, len, CV_32FC1);
	float *d = dest.ptr<float>(0);
	for (size_t i = 0; i < len; i++)
	{
		d[i] = (Omax - Omin)*(p[i] - Imin) / (Imax - Imin) + Omin;;
	}
	return dest;
}

float Normalization(float x, float Imin, float Imax, float Omin, float Omax) {
	float d = (Omax - Omin)*(x - Imin) / (Imax - Imin) + Omin;;
	return d;
}



阅读更多 登录后自动展开

扫码向博主提问

pan_jinquan

博客专家

非学,无以致疑;非问,无以广识
  • 擅长领域:
  • 图像处理
  • AI人工智能
  • OpenCV
  • TensorFlow
  • Caffe
去开通我的Chat快问
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页