Pytorch自定义Dataset和DataLoader去除不存在和空的数据
【源码GitHub地址】:https://github.com/PanJinquan/pytorch-learning-tutorials/tree/master/image_classification/utils
觉得可以,麻烦给个”Star“
目录
Pytorch自定义Dataset和DataLoader去除不存在和空的数据
3. 另一种解决方法:自定义返回数据的规则:collate_fn()校队函数
3.1 Pytorch数据处理函数:Dataset和 DataLoader
1. 问题描述
之前写了一篇关于《pytorch Dataset, DataLoader产生自定义的训练数据》的博客,但存在一个问题,我们不能在Dataset做一些数据清理,如果我们传递给Dataset数据,本身存在问题,那么迭代过程肯定出错的。
比如我把很多图片路径都传递给Dataset,如果图片路径都是正确的,且图片都存在也没有损坏,那显然运行是没有问题的;但倘若传递给Dataset的图片路径有些图片是不存在,这时你通过Dataset读取图片数据,然后再迭代返回,就会出现类似如下的错误:
File "D:\ProgramData\Anaconda3\envs\pytorch-py36\lib\site-packages\torch\utils\data\_utils\collate.py", line 68, in <listcomp>
return [default_collate(samples) for samples in transposed]
File "D:\ProgramData\Anaconda3\envs\pytorch-py36\lib\site-packages\torch\utils\data\_utils\collate.py", line 70, in default_collate
raise TypeError((error_msg_fmt.format(type(batch[0]))))
TypeError: batch must contain tensors, numbers, dicts or lists; found <class 'NoneType'>
2. 一般的解决方法
一般的解决方法也很简单粗暴,就是在传递数据给Dataset前,就做数据清理,把不存在的图片,损坏的数据都提前清理掉。是的,这个是最简单粗暴的
3. 另一种解决方法:自定义返回数据的规则:collate_fn()校对函数
我们希望不管传递什么处理给Dataset,Dataset都进行处理,如果不存在或者异常,就返回None,而在DataLoader时,对于不存为None的数据,都去除掉。这样就保证在迭代过程中,DataLoader获得batch数据都是正确的。比如读取batch_size=5的图片数据,如果其中有1个(或者多个)图片是不存在,那么返回的batch应该把不存在的数据过滤掉,即返回5-1=4大小的batch的数据。
是的,我要实现的就是这个功能:返回的batch数据会自定清理掉不合法的数据。
3.1 Pytorch数据处理函数:Dataset和 DataLoader
Pytorch有两个数据处理函数:Dataset和 DataLoader
from torch.utils.data import Dataset, DataLoader
其中Dataset用于定义数据的读取和预处理操作,而DataLoader用于加载并产生批训练数据。
torch.utils.data.DataLoader参数说明:
DataLoader(object)可用参数:
- dataset(Dataset): 传入的数据集
- batch_size(int, optional): 每个batch有多少个样本
- shuffle(bool, optional): 在每个epoch开始的时候,对数据进行重新排序
- sampler(Sampler, optional): 自定义从数据集中取样本的策略,如果指定这个参数,那么shuffle必须为False
- batch_sampler(Sampler, optional): 与sampler类似,但是一次只返回一个batch的indices(索引),需要注意的是,一旦指定了这个参数,那么batch_size,shuffle,sampler,drop_last就不能再制定了(互斥——Mutually exclusive)
- num_workers (int, optional): 这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程。(默认为0)
- collate_fn (callable, optional): 将一个list的sample组成一个mini-batch的函数
- pin_memory (bool, optional): 如果设置为True,那么data loader将会在返回它们之前,将tensors拷贝到CUDA中的固定内存(CUDA pinned memory)中.
- drop_last (bool, optional):如果设置为True:这个是对最后的未完成的batch来说的,比如你的batch_size设置为64,而一个epoch只有100个样本,那么训练的时候后面的36个就被扔掉了。 如果为False(默认),那么会继续正常执行,只是最后的batch_size会小一点。
- timeout(numeric, optional):如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0。默认为0
- worker_init_fn (callable, optional): 每个worker初始化函数 If not None, this will be called on eachworker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None)
我们要用到的是collate_fn()回调函数
3.2 自定义collate_fn()函数:
torch.utils.data.DataLoader的collate_fn()用于设置batch数据拼接方式,默认是default_collate函数,但当batch中含有None等数据时,默认的default_collate校队方法会出现错误。因此,我们需要自定义collate_fn()函数:
方法也很简单:只需在原来的default_collate函数中添加下面几句代码:判断image是否为None,如果为None,则在原来的batch中清除掉,这样就可以在迭代中避免出错了。
# 这里添加:判断image是否为None,如果为None,则在原来的batch中清除掉,这样就可以在迭代中避免出错了
if isinstance(batch, list):
batch = [(image, image_id) for (image, image_id) in batch if image is not None]
if batch==[]:
return (None,None)
dataset_collate.py:
# -*-coding: utf-8 -*-
"""
@Project: pytorch-learning-tutorials
@File : dataset_collate.py
@Author : panjq
@E-mail : pan_jinquan@163.com
@Date : 2019-06-07 17:09:13
"""
r""""Contains definitions of the methods used by the _DataLoaderIter workers to
collate samples fetched from dataset into Tensor(s).
These **needs** to be in global scope since Py2 doesn't support serializing
static methods.
"""
import torch
import re
from torch._six import container_abcs, string_classes, int_classes
_use_shared_memory = False
r"""Whether to use shared memory in default_collate"""
np_str_obj_array_pattern = re.compile(r'[SaUO]')
error_msg_fmt = "batch must contain tensors, numbers, dicts or lists; found {}"
numpy_type_map = {
'float64': torch.DoubleTensor,
'float32': torch.FloatTensor,
'float16': torch.HalfTensor,
'int64': torch.LongTensor,
'int32': torch.IntTensor,
'int16': torch.ShortTensor,
'int8': torch.CharTensor,
'uint8': torch.ByteTensor,
}
def collate_fn(batch):
'''
collate_fn (callable, optional): merges a list of samples to form a mini-batch.
该函数参考touch的default_collate函数,也是DataLoader的默认的校对方法,当batch中含有None等数据时,
默认的default_collate校队方法会出现错误
一种的解决方法是:
判断batch中image是否为None,如果为None,则在原来的batch中清除掉,这样就可以在迭代中避免出错了
:param batch:
:return:
'''
r"""Puts each data field into a tensor with outer dimension batch size"""
# 这里添加:判断image是否为None,如果为None,则在原来的batch中清除掉,这样就可以在迭代中避免出错了
if isinstance(batch, list):
batch = [(image, image_id) for (image, image_id) in batch if image is not None]
if batch==[]:
return (None,None)
elem_type = type(batch[0])
if isinstance(batch[0], torch.Tensor):
out = None
if _use_shared_memory:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = batch[0].storage()._new_shared(numel)
out = batch[0].new(storage)
return torch.stack(batch, 0, out=out)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
elem = batch[0]
if elem_type.__name__ == 'ndarray':
# array of string classes and object
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(error_msg_fmt.format(elem.dtype))
return collate_fn([torch.from_numpy(b) for b in batch])
if elem.shape == (): # scalars
py_type = float if elem.dtype.name.startswith('float') else int
return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
elif isinstance(batch[0], float):
return torch.tensor(batch, dtype=torch.float64)
elif isinstance(batch[0], int_classes):
return torch.tensor(batch)
elif isinstance(batch[0], string_classes):
return batch
elif isinstance(batch[0], container_abcs.Mapping):
return {key: collate_fn([d[key] for d in batch]) for key in batch[0]}
elif isinstance(batch[0], tuple) and hasattr(batch[0], '_fields'): # namedtuple
return type(batch[0])(*(collate_fn(samples) for samples in zip(*batch)))
elif isinstance(batch[0], container_abcs.Sequence):
transposed = zip(*batch)#ok
return [collate_fn(samples) for samples in transposed]
raise TypeError((error_msg_fmt.format(type(batch[0]))))
测试方法:
# -*-coding: utf-8 -*-
"""
@Project: pytorch-learning-tutorials
@File : dataset.py
@Author : panjq
@E-mail : pan_jinquan@163.com
@Date : 2019-03-07 18:45:06
"""
import torch
from torch.autograd import Variable
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader
import numpy as np
from utils import dataset_collate
import os
import cv2
from PIL import Image
def read_image(path,mode='RGB'):
'''
:param path:
:param mode: RGB or L
:return:
'''
return Image.open(path).convert(mode)
class TorchDataset(Dataset):
def __init__(self, image_id_list, image_dir, resize_height=256, resize_width=256, repeat=1, transform=None):
'''
:param filename: 数据文件TXT:格式:imge_name.jpg label1_id labe2_id
:param image_dir: 图片路径:image_dir+imge_name.jpg构成图片的完整路径
:param resize_height 为None时,不进行缩放
:param resize_width 为None时,不进行缩放,
PS:当参数resize_height或resize_width其中一个为None时,可实现等比例缩放
:param repeat: 所有样本数据重复次数,默认循环一次,当repeat为None时,表示无限循环<sys.maxsize
:param transform:预处理
'''
self.image_dir = image_dir
self.image_id_list=image_id_list
self.len = len(image_id_list)
self.repeat = repeat
self.resize_height = resize_height
self.resize_width = resize_width
self.transform= transform
def __getitem__(self, i):
index = i % self.len
# print("i={},index={}".format(i, index))
image_id = self.image_id_list[index]
image_path = os.path.join(self.image_dir, image_id)
img = self.load_data(image_path)
if img is None:
return None,image_id
img = self.data_preproccess(img)
return img,image_id
def __len__(self):
if self.repeat == None:
data_len = 10000000
else:
data_len = len(self.image_id_list) * self.repeat
return data_len
def load_data(self, path):
'''
加载数据
:param path:
:param resize_height:
:param resize_width:
:param normalization: 是否归一化
:return:
'''
try:
image = read_image(path)
except Exception as e:
image=None
print(e)
# image = image_processing.read_image(path)#用opencv读取图像
return image
def data_preproccess(self, data):
'''
数据预处理
:param data:
:return:
'''
if self.transform is not None:
data = self.transform(data)
return data
if __name__=='__main__':
resize_height = 224
resize_width = 224
image_id_list=["1.jpg","ddd.jpg","111.jpg","3.jpg","4.jpg","5.jpg","6.jpg","7.jpg","8.jpg","9.jpg"]
image_dir="../dataset/test_images/images"
# 相关预处理的初始化
'''class torchvision.transforms.ToTensor把shape=(H,W,C)的像素值范围为[0, 255]的PIL.Image或者numpy.ndarray数据
# 转换成shape=(C,H,W)的像素数据,并且被归一化到[0.0, 1.0]的torch.FloatTensor类型。
'''
train_transform = transforms.Compose([
transforms.Resize(size=(resize_height, resize_width)),
# transforms.RandomHorizontalFlip(),#随机翻转图像
transforms.RandomCrop(size=(resize_height, resize_width), padding=4), # 随机裁剪
transforms.ToTensor(), # 吧shape=(H,W,C)->换成shape=(C,H,W),并且归一化到[0.0, 1.0]的torch.FloatTensor类型
# transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))#给定均值(R,G,B) 方差(R,G,B),将会把Tensor正则化
])
epoch_num=2 #总样本循环次数
batch_size=5 #训练时的一组数据的大小
train_data_nums=10
max_iterate=int((train_data_nums+batch_size-1)/batch_size*epoch_num) #总迭代次数
train_data = TorchDataset(image_id_list=image_id_list,
image_dir=image_dir,
resize_height=resize_height,
resize_width=resize_width,
repeat=1,
transform=train_transform)
# 使用默认的default_collate会报错
# train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False)
# 使用自定义的collate_fn
train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False, collate_fn=dataset_collate.collate_fn)
# [1]使用epoch方法迭代,TorchDataset的参数repeat=1
for epoch in range(epoch_num):
for step,(batch_image, batch_label) in enumerate(train_loader):
if batch_image is None and batch_label is None:
print("batch_image:{},batch_label:{}".format(batch_image, batch_label))
continue
image=batch_image[0,:]
image=image.numpy()#image=np.array(image)
image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c]
cv2.imshow("image",image)
cv2.waitKey(2000)
print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label))
# batch_x, batch_y = Variable(batch_x), Variable(batch_y)
输出结果说明:
batch_size=5,输入图片列表image_id_list=["1.jpg","ddd.jpg","111.jpg","3.jpg","4.jpg","5.jpg","6.jpg","7.jpg","8.jpg","9.jpg"] ,其中"ddd.jpg","111.jpg"是不存在的,resize_width=224,正常情况下返回的数据应该是torch.Size([5, 3, 224, 224]),但由于"ddd.jpg","111.jpg"不存在,被过滤掉了,所以第一个batch的维度变为torch.Size([3, 3, 224, 224])
[Errno 2] No such file or directory: '../dataset/test_images/images\\ddd.jpg'
[Errno 2] No such file or directory: '../dataset/test_images/images\\111.jpg'
batch_image.shape:torch.Size([3, 3, 224, 224]),batch_label:('1.jpg', '3.jpg', '4.jpg')
batch_image.shape:torch.Size([5, 3, 224, 224]),batch_label:('5.jpg', '6.jpg', '7.jpg', '8.jpg', '9.jpg')
[Errno 2] No such file or directory: '../dataset/test_images/images\\ddd.jpg'
[Errno 2] No such file or directory: '../dataset/test_images/images\\111.jpg'
batch_image.shape:torch.Size([3, 3, 224, 224]),batch_label:('1.jpg', '3.jpg', '4.jpg')
batch_image.shape:torch.Size([5, 3, 224, 224]),batch_label:('5.jpg', '6.jpg', '7.jpg', '8.jpg', '9.jpg')