
point cloud
guyuezunting
这个作者很懒,什么都没留下…
展开
-
文章Coarse Alignment for Model Fitting of Point Clouds Using a Curvature-Based Descriptor解读五自动生成关键点参数
自动生成关键点参数: 在处理大量点云的时候,人为手动设置参数势必会严重影响处理速度。 因此,分析点云,自动判断哪些点相对更有独特性,然后基于此计算出关键点的参数。用下面的公式对点云的点进行排序 其中是临近点集的点数,由式(13~15)分别计算得到。参考文章Coarse Alignment for Model Fitting of Point Clouds Using a Curvature-Based Descriptor解读四选择特征点ethod。因为所以如果或者则F=0,代表一个非常特殊的点。原创 2020-08-09 11:05:16 · 166 阅读 · 0 评论 -
文章Coarse Alignment for Model Fitting of Point Clouds Using a Curvature-Based Descriptor解读四选择特征点ethod
本文中的方法可以按照粗配准的流程描述:第一选取模型点云Y的特征点,第二,选取观察点云X的特征点,基于每个点的临近点组成的几何特征选取。第三步,为X和Y的关键点计算一个描述,第四,利用特征点描述对X和Y进行配准。最后利用特征点的描述得到位姿估计。 一、特征点选取: 协方差矩阵:解决配准问题,关键是从两个点云找到相同或者对等的特征点。这样做有两个影响:一个是降低了需要计算的点。提高运算速度。第二是减小搜索空间反而更有可能找到正确匹配的结果。 对于每一个点pi,一定半径r内,包含的对应的点集,都有对应的近邻原创 2020-08-08 19:07:27 · 251 阅读 · 0 评论 -
文章Coarse Alignment for Model Fitting of Point Clouds Using a Curvature-Based Descriptor解读三共形几何基础
接上上一节粗配准文章Coarse Alignment for Model Fitting of Point Clouds Using a Curvature-Based Descriptor解读二粗配准,下面看预处理小节原创 2020-08-03 10:11:39 · 228 阅读 · 0 评论 -
文章Coarse Alignment for Model Fitting of Point Clouds Using a Curvature-Based Descriptor解读二粗配准
接第一篇,文章Coarse Alignment for Model Fitting of Point Clouds Using a Curvature-Based Descriptor解读一。开始讲解粗配准简介 粗配准通常只解决配准两个子问题中的一个。找到使两者对齐的姿势。这意味着粗配准方法不考虑点云对应。粗配准分为两类:全局和局部方法。全局方法利用全局的要素,例如质心,找到translation以及利用主成分分析找到方向。局部方法,为点云创建特征或者签名集合,通过对比两个点云的特征计算correspon原创 2020-07-28 23:13:53 · 289 阅读 · 0 评论