图像超分辨率重建
文章平均质量分 70
本专栏是本人做图像超分的博客记录~ 希望各位对超分感兴趣的小伙伴一起学习
gwpscut
越努力,越幸运
展开
-
学习笔记之——基于深度学习的图像超分辨率重建
最近开展图像超分辨率(Image Super Resolution)方面的研究,做了一些列的调研,并结合本人的理解总结成本博文~(本博文仅用于本人的学习笔记,不做商业用途)本博文涉及的paper已经打包,供各位看客下载哈~https://download.csdn.net/download/gwplovekimi/10728916目录超分辨率(Super Reso...原创 2018-10-13 20:01:44 · 86546 阅读 · 19 评论 -
超分辨率重建task中,常用数据集总结
SR Datasets有挺多人问我关于超分变率重建的数据集的问题,这里把超分辨率重建领域常用的数据集list出来 Name Datasets Short Description Google Drive Baidu Drive Classical SR Training T91 91 images for tra...原创 2020-03-19 12:01:45 · 8310 阅读 · 3 评论 -
图像超分之——寻找两张图差异的区域
本代码是超分或者复原任务中,想找出PSNR差距较大的区域的代码import osimport mathimport numpy as npimport cv2import globfrom skimage import transformfrom skimage import measurefrom collections import OrderedDictimport ...原创 2019-11-14 16:34:00 · 2195 阅读 · 0 评论 -
查看卷积网络每一层的feature map的代码
import osimport sysimport pdbimport loggingimport timeimport torchimport argparseimport numpy as npimport torch.nn as nnimport torch.nn.functional as Ffrom collections import OrderedDicti...原创 2019-09-26 14:53:14 · 1285 阅读 · 2 评论 -
实验记录之——SRResNet、CARN、RRDB、RCAN复现代码
python train.py -opt options/train/train_sr.jsonpython3 test.py -opt options/test/test_sr.jsonsource activate pytorchtensorboard --logdir tb_logger/ --port 6008http://172.20.36.203:6008/#sca...原创 2019-08-18 12:12:50 · 5256 阅读 · 1 评论 -
实验笔记之——Residual Dense Network for Image Super-Resolution (RDN)
论文链接:https://arxiv.org/pdf/1802.08797.pdf代码链接:https://github.com/yulunzhang/RDNpython train.py -opt options/train/train_sr.jsonpython3 test.py -opt options/test/test_sr.jsonsource activate ...原创 2019-08-06 10:27:01 · 1804 阅读 · 0 评论 -
实验笔记之——multi-SR
###############################################################################################Multi-scale SRclass MSSR(nn.Module): def __init__(self, in_nc, out_nc, nf=64, ng=10, nb=20, red...原创 2019-07-20 08:13:22 · 261 阅读 · 0 评论 -
卷积网络的运算量和参数量的计算
在实验中,经常需要计算网络的参数量和预算量。参考:https://github.com/nmhkahn/torchsummaryX运算量和参数量的计算代码 # Calculate params & FLOPs from torchsummaryX import summary dummy_input = torch.zeros(1, 3, 128, 12...原创 2019-06-24 16:17:42 · 2995 阅读 · 0 评论 -
NIQE计算
NIQE计算可以参考下面两个github的链接https://github.com/roimehrez/PIRM2018https://github.com/chaoma99/sr-metric进入m文件所在目录后,运行$ matlab -nodesktop -nosplash -r matlabfile只用文件名matlabfile,不能添加.m代码里面有计算mse的...原创 2019-06-23 13:13:38 · 5205 阅读 · 1 评论 -
论文阅读笔记之——《Scale-recurrent Network for Deep Image Deblurring》
论文链接:https://arxiv.org/pdf/1802.01770.pdf代码:https://github.com/jiangsutx/SRN-Deblur在本论文中,我们探索了一种用于多尺度图像去模糊的更有效的网络结构。我们提出了一种新的尺度循环网络(SRN:scale-recurrent network)(we explore a more effective network...原创 2019-06-21 11:35:19 · 5063 阅读 · 1 评论 -
图像补全(image inpainting)
图像补全(image inpainting)要求算法根据图像自身或图像库信息来补全待修复图像的缺失区域,使得修复后的图像看起来非常自然,难以和未受损的图像区分开。根据恐怖谷理论,只要填补内容和未受损区域有细微的不协调,就会非常显眼。因此高质量的图像补全不仅要求生成的内容语义合理,还要求生成的图像纹理足够清晰真实。目前最好的图像补全的方法主要分为两类:一类是经典的纹理合成方法,核心是从图像的未受...原创 2019-06-21 10:59:42 · 19388 阅读 · 0 评论 -
论文阅读笔记之——《Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring》
论文:https://arxiv.org/pdf/1612.02177.pdf代码:https://github.com/SeungjunNah/DeepDeblur_release代码解读https://blog.csdn.net/wm6274/article/details/71194225数据集下载链接在上面的github里面we propose a multi-sca...原创 2019-06-21 10:47:13 · 5489 阅读 · 2 评论 -
论文阅读笔记之——《Deep Stacked Hierarchical Multi-patch Network for Image Deblurring》
论文:https://arxiv.org/pdf/1904.03468v1.pdf本文是做非均匀deblur的。The goal of non-uniform blind image deblurring is to remove the undesired blur caused by the camera motion and the scene dynamics开篇作者抛出来两个问题...原创 2019-06-20 16:52:16 · 3002 阅读 · 0 评论 -
实验笔记之——covariance matrix pooling
本博文为协方差池化的实验笔记。具体理论请参考博客《学习笔记之——covariance pooling》实验python train.py -opt options/train/train_sr.json先激活虚拟环境source activate pytorchtensorboard --logdir tb_logger/ --port 6008浏览器打开http://172.20...原创 2019-06-17 15:44:44 · 2975 阅读 · 3 评论 -
实验笔记之——Channel Attention(RCAN的复现)
实验python train.py -opt options/train/train_sr.json先激活虚拟环境source activate pytorchtensorboard --logdir tb_logger/ --port 6008浏览器打开http://172.20.36.203:6008/#scalars首先给出论文《Image Super-Resolu...原创 2019-06-17 13:46:17 · 13022 阅读 · 4 评论 -
paper survey(2019.06.11)——卷积网络高阶特征表示
类似于博文《paper survey(2019.06.05)——卷积网络feature map的传递与利用》本博文也是系列论文的阅读笔记(基本都是CVPR和ICCV的论文)。对于跟本博文相关的论文会展开描述,对于不相关的仅仅列出题目。目录《G2DeNet: Global Gaussian Distribution Embedding Network and Its Appl...原创 2019-06-11 15:17:16 · 9846 阅读 · 1 评论 -
paper survey(2019.06.05)——卷积网络feature map的传递与利用
最近阅读大量的paper来寻找突破点,就不打算一篇一篇的写博文的,直接记录于此(比较有意思的paper会独立出来博客)目录《Scale-Transferrable Object Detection》《Weakly Supervised Phrase Localization with Multi-Scale Anchored Transformer Network》《Fact...原创 2019-06-05 19:05:14 · 4918 阅读 · 0 评论 -
学习笔记之——计算机视觉中的Attention机制(Visual Attention)
最近看了系列论文,对于里面的attention机制理解不到位,为此写下这篇博文,作为对attention机制的学习笔记。本文的文字来源于网络的各种推文、博客加本人的总结。仅供本人学习记录用,不做商业用途基于RNN(循环神经网络)的attention机制,直接百度搜的话,应该大多数都是机器翻译或自然语言处理方面的。本文主要介绍CV中的attention机制。注意力(attention)...原创 2019-06-03 14:35:14 · 3168 阅读 · 3 评论 -
论文阅读笔记之——《Image Super-Resolution Using Very Deep Residual Channel Attention Networks》RCAN
先给出论文的链接http://openaccess.thecvf.com/content_ECCV_2018/papers/Yulun_Zhang_Image_Super-Resolution_Using_ECCV_2018_paper.pdf论文的代码https://github.com/yulunzhang/RCAN复现的代码在博客《实验笔记之——Channel Attention(R...原创 2019-05-30 16:38:10 · 8794 阅读 · 0 评论 -
实验笔记之——octave layer(4路数据)
本博文为将octave layer改为四路数据的实验记录实验python train.py -opt options/train/train_sr.json先激活虚拟环境source activate pytorchtensorboard --logdir tb_logger/ --port 6008浏览器打开http://172.20.36.203:6008/#scalars...原创 2019-05-27 10:20:36 · 453 阅读 · 0 评论 -
实验笔记之——参数量为0.1M的超分网络(octave layer)
本博文为实验笔记实验python train.py -opt options/train/train_sr.json先激活虚拟环境source activate pytorchtensorboard --logdir tb_logger/ --port 6008浏览器打开http://172.20.36.203:6008/#scalars参数量为176,234参数量为1...原创 2019-05-21 15:40:29 · 839 阅读 · 0 评论 -
Dilated Convolution (空洞卷积或扩张卷积)
之前博文已经对空洞卷积做了介绍,本文进行深入介绍《各种卷积层的理解(深度可分离卷积、分组卷积、扩张卷积、反卷积)》诞生背景,在图像分割领域,图像输入到CNN(典型的网络比如FCN[3])中,FCN先像传统的CNN那样对图像做卷积再pooling,降低图像尺寸的同时增大感受野,但是由于图像分割预测是pixel-wise的输出,所以要将pooling后较小的图像尺寸upsampling到原始...原创 2019-05-18 18:01:29 · 10165 阅读 · 1 评论 -
实验笔记之——octave conv (dilation_CONV)
本博文为octave layer系列实验,采用空洞卷积代替pool实验python train.py -opt options/train/train_sr.json先激活虚拟环境source activate pytorchtensorboard --logdir tb_logger/ --port 6008浏览器打开http://172.20.36.203:6008/#s...原创 2019-05-14 16:19:14 · 955 阅读 · 0 评论 -
实验笔记之——octave conv (double pooling)
本博文类似于博文《实验笔记之——octave conv (without pooling)》唯一不同的是,本博文是采用4倍的scale(ocatve 采用2倍scale)代码###########################################################################################################...原创 2019-05-13 13:05:07 · 730 阅读 · 1 评论 -
实验笔记之——基于DWT的octave layer(DWT在pytorch中实现)
之前的博文《论文阅读笔记之——《Multi-level Wavelet-CNN for Image Restoration》及基于pytorch的复现》曾经研究过WMCNN。本博文就是采用DWT变换代替octave中的pooling代码类似于博文《实验笔记之——octave conv (without pooling)》对octave layer的结构进行改进如下:pytorch中实现...原创 2019-05-13 11:09:34 · 5208 阅读 · 2 评论 -
实验笔记之——octave conv (without pooling)
本博文为实验笔记。对之前采用的octave conv进行改进,看看performance,实验python train.py -opt options/train/train_sr.json先激活虚拟环境source activate pytorchtensorboard --logdir tb_logger/ --port 6008浏览器打开http://172.20.36....原创 2019-05-13 10:57:06 · 866 阅读 · 1 评论 -
论文阅读笔记之——《Learning a Discriminative Prior for Blind Image Deblurring》
先给出论文链接(https://arxiv.org/pdf/1803.03363v1.pdf)本文是关于盲去模糊问题。之前做了很长一段时间的盲复原,始终没有得到很好的inspiration,希望这篇论文能有所启发~本文基于data-driven discriminative prior.(数据驱动的先验鉴别),将imageprior作为二进制分类器(CNN),先验的学习(learned ...原创 2019-05-10 20:03:41 · 3178 阅读 · 2 评论 -
实验笔记之——基于RRDBNet的Octave Convolution实验记录
本博文对RRDBNET进行改进,将里面的conv层改为octave conv层。关于ESRGAN可以参考本文之前的博客《基于pytorch的ESRGAN(论文阅读笔记+复现)》先复现RRDBNET网络结构#############################################################################...原创 2019-05-09 15:34:54 · 6532 阅读 · 3 评论 -
论文阅读笔记之——《Temporally Coherent GANs for Video Super-Resolution (TecoGAN)》
先给出论文链接https://arxiv.org/pdf/1811.09393.pdf本人一开始其实是要做video SR的课题的~但是后来几经波折还是没有做,最近看到一个有趣的报道,为此写下这篇学习笔记图像超分辨率技术指的是根据低分辨率图像生成高分辨率图像的过程,该技术希望根据已有的图像信息重构出缺失的图像细节。视频超分辨率技术则更加复杂,不仅需要生成细节丰富的一帧帧图像,还要保持图像之...原创 2019-05-08 16:35:03 · 24918 阅读 · 0 评论 -
论文阅读笔记——《Good Similar Patches for Image Denoising》
作者认为,基于patch的去噪方法之所以可以获得较好的performance就是因为recurrence of similar patches in an input image to estimate the underlying image structures(在输入图像中重复出现类似的补丁以估计底层图像结构。)然而,denoise中所用的相似的patch是通过邻近搜索的(NNS),而有时却...原创 2019-05-08 12:24:30 · 944 阅读 · 2 评论 -
各种卷积层的理解(深度可分离卷积、分组卷积、扩张卷积、反卷积)
最近在研究卷积网络的改性,有必要对各种卷积层的结构深入熟悉一下。为此写下这篇学习笔记。文章大部分内容来自于网络的各种博客总结,本博文仅仅作为本人学习笔记,不做商业用途。目录2D卷积3D卷积1*1卷积空间可分离卷积(separable convolution)深度可分离卷积(depthwise separable convolution)分组卷积(Group conv...原创 2019-05-06 20:23:55 · 55619 阅读 · 23 评论 -
超分、复原方面paper画结果图的代码
本博文为本人mark下如何割子图的代码:from PIL import Image, ImageDrawimport glob, os dir = '/home/guanwp/zhangwenlong/OPNet/' # the direction of the result # the(x, y), and the widthx = 80y = 60width = 4...原创 2019-05-05 10:02:42 · 737 阅读 · 0 评论 -
实验笔记之——基于CARN的Octave Convolution实验记录
本博文跟上一篇博文《实验笔记之——基于SRResNet的Octave Convolution实验记录》类似,只是改为CARN的结构。用octave convolution代替传统的convolution给出CARN的代码https://github.com/nmhkahn/CARN-pytorch论文https://arxiv.org/pdf/1803.08664.pdf理论...原创 2019-05-03 14:40:14 · 2189 阅读 · 4 评论 -
ADAFM实验笔记
本博文为测试我的小伙伴的github代码的实验记录先给出GitHub链接(https://github.com/hejingwenhejingwen/AdaFM)原创 2019-04-30 15:53:55 · 604 阅读 · 0 评论 -
实验笔记之——基于SRResNet的Octave Convolution实验记录
先给出论文的链接(https://arxiv.org/pdf/1904.05049.pdf)github连接(https://github.com/terrychenism/OctaveConv/)本博文为文章《Drop an Octave Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Co...原创 2019-04-30 11:28:16 · 3525 阅读 · 4 评论 -
论文阅读笔记之——《Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels》
本博文为论文的阅读笔记。论文的链接(https://www.researchgate.net/publication/332109956_Deep_Plug-and-Play_Super-Resolution_for_Arbitrary_Blur_Kernels)开源的代码:https://github.com/cszn/DPSR本文其实相当于盲超分(传统的超分就是做bicubic),...原创 2019-04-20 15:10:43 · 11357 阅读 · 12 评论 -
超分网络实验结果记录
博文(Enhanced Deep Residual Networks for Single Image Super-Resolution(EDSR)实验记录)的实验结果记录如下:实验一(Tiny版RRDN,RRDBTiny_8F,复现baseline)网络结构参数量0.14M--size 96--batch_size 16--...原创 2019-04-09 10:50:23 · 1253 阅读 · 0 评论 -
Enhanced Deep Residual Networks for Single Image Super-Resolution(EDSR)实验记录
EDSR(enhanced deep super-resolution network)(Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW2017)github(torch):https://github.com/LimBee/NTIRE2017https://2017github(tens...原创 2019-04-06 19:41:02 · 802 阅读 · 3 评论 -
图像超分辨率重建(SISR)
好久没有写博客了~接下来会写一系列超分的paper的阅读笔记,均来自~GitHub上的Single-Image-Super-Resolution项目的paper(自己mark一下)https://github.com/YapengTian/Single-Image-Super-Resolution...原创 2019-04-04 14:18:22 · 8909 阅读 · 0 评论 -
基于python实现模糊处理
python train_noise_sigma.py -opt options/train/train_level_sr.json 参考材料https://github.com/xlxwalex/lab102/blob/master/W5/Python%E4%B8%8B%E9%80%9A%E8%BF%87%E7%AE%97%E6%B3%95%E4%BD%BF%E5%9B%BE%E7%89...原创 2019-02-09 18:53:36 · 8923 阅读 · 2 评论