NER 的评价指标

常见的基本概念

TPFPTNFNAccuracy 准确率Precision 查准率(精确率)Recall 查全率(召回率)F1 score等。

  • TP: true positive。实际为正,预测为正。
  • FP: false positive。实际为负,预测为正。
  • TN: true negative。实际为负,预测为负。
  • FN: false negative。实际为正,预测为负。

混淆矩阵

真实情况预测结果
正例反例
正例TP(真正例)FN(假反例)
反例FP(假正例)TN(真反例)

各概念公式

准确率

A c c u r a c y = 分类正确的样本数 总样本数 也就是 A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy =\frac{分类正确的样本数}{总样本数}\\ 也就是Accuracy =\frac{TP+TN}{TP+TN+FP+FN} Accuracy=总样本数分类正确的样本数也就是Accuracy=TP+TN+FP+FNTP+TN

准确率最简单直观,但是正负样本数比例不均衡就会导致准确率很容易被比例大的样本影响。

查准率 P 和查全率 R

查准率:实际为正预测也为正的样本 占 所有被预测为正的样本的比例。

查全率:实际为正预测也为正的样本 占 实际为正的样本的比例。
P = T P T P + F P R = T P T P + F N P =\frac{TP}{TP+FP}\\ R =\frac{TP}{TP+FN} P=TP+FPTPR=TP+FNTP
Precision 体现了模型对负样本的区分能力,Precision 越高,模型对负样本的区分能力越强;

Recall 体现了模型对正样本的识别能力,Recall 越高,模型对正样本的识别能力越强。

F1 score

F1-score:查准率和查全率的调和平均数。
F 1 = 2 × P × R P + R F1=\frac{2\times P \times R}{P+R} F1=P+R2×P×R
F1-scorePR 的综合,F1-score 越高,说明模型越稳健。

具体的 F1 详情可以参考这篇文章:机器学习 Micro-F1和Macro-F1详解

NER 的评价指标

# example
我	O
在	O
南	B-LOC
京	I-LOC

​ NER 评估分为 Tag 级别(B-LOC,I-LOC) 和 Entity 级别 (南京),一般以 entity 的 micro F1-score 为准。因为 tag 预测准确率高但是抽取出的 entity 有误,例如边界错误,在实际应用时依旧抽取的是错误的实体。

​ 在 NER 中,一般由于 O 标签的实体过多造成了数据极度不均衡。分别针对每个实体标注都需要计算对应的 F1,最后再计算整体平均,这个称为 macro F1-score

  • 3
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值