目录
栈的概念
栈是一种特殊的线性表,只允许在固定的一段进行插入和删除元素操作。进行数据插入和删除的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出LIFOA(Last In First Out)的原则。
压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶。
出栈:栈的删除操作也叫出栈,出数据也在栈顶。
栈的实现一般可以使用数组或者链表实现,相对而言数组的结构实现更优一些。因为数组在尾上插入数据的代价比较小。
栈的实现
头文件 039-Stack.h
#define _CRT_SECURE_NO_WARNINGS 1
#pragma once
#include<stdbool.h>
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
typedef int STDataType;
struct Stack
{
STDataType* a;
int top;//栈顶,top指向最后一个数据的下一个位置
int capacity;//容量,方便增容
};
typedef struct Stack Stack;
//初始化
void StackInit(Stack* pst);
//销毁
void StackDestroy(Stack* pst);
//栈顶插入元素
void StackPush(Stack* pst, STDataType x);
//栈顶删除元素
void StackPop(Stack* pst);
//取栈顶元素
STDataType StackTop(Stack* pst);
//判断栈空
bool StackEmpty(Stack* pst);
//求栈元素个数
int StackSize(Stack* pst);
源文件 039-Stack.c
#include "039-Stack.h"
//初始化
void StackInit(Stack* pst)
{
assert(pst);
pst->a = (STDataType*)malloc(sizeof(STDataType) * 4);
pst->top = 0;
pst->capacity = 4;
}
//销毁
void StackDestroy(Stack* pst)
{
assert(pst);
free(pst->a);
pst->a = NULL;
pst->capacity = pst->top = 0;
}
//插入元素
void StackPush(Stack* pst, STDataType x)
{
assert(pst);
if (pst->top == pst->capacity)
{
STDataType* tmp = (STDataType*)realloc(pst->a, sizeof(STDataType) * pst->capacity * 2);
if (tmp == NULL)
{
printf("realloc fail\n");
exit(-1);
}
pst->a = tmp;
pst->capacity *= 2;
}
pst->a[pst->top] = x;
pst->top++;
}
//删除元素
void StackPop(Stack* pst)
{
assert(pst);
assert(!StackEmpty(pst));
pst->top--;
}
//返回栈顶元素
STDataType StackTop(Stack* pst)
{
assert(pst);
assert(!StackEmpty(pst));
return pst->a[pst->top - 1];
}
//判断栈是否已满,空返回1,非空返回0
bool StackEmpty(Stack* pst)
{
assert(pst);
return pst->top == 0;
}
//求栈中元素个数
int StackSize(Stack* pst)
{
assert(pst);
return pst->top;
}
测试文件 039-test.c
#define _CRT_SECURE_NO_WARNINGS 1
#include "039-Stack.h"
void TestStack()
{
Stack st;
StackInit(&st);
StackPush(&st, 1);
StackPush(&st, 2);
StackPush(&st, 3);
while (!StackEmpty(&st))
{
printf("%d ", StackTop(&st));
StackPop(&st);
}
StackDestroy(&st);
}
int main()
{
TestStack();
return 0;
}
栈的应用
1.有效的括号 OJ链接
分析:
(1)将栈的实现可以直接copy进去(返回栈顶元素需要做小小的改动:如果栈为空,不能直接assert断言终止,而要返回'\0'),后面只需要实现括号的匹配即可。
(2)如何实现括号匹配?如果是左括号,那么入栈,如果是右括号就判断栈顶元素该右括号是否能够匹配,如果可以就从栈里弹出一个左括号,如果不匹配就直接返回false。
#define _CRT_SECURE_NO_WARNINGS 1
#pragma once
#include<stdbool.h>
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
typedef int STDataType;
struct Stack
{
STDataType* a;
int top;//栈顶,top指向最后一个数据的下一个位置
int capacity;//容量,方便增容
};
typedef struct Stack Stack;
//初始化
void StackInit(Stack* pst);
//销毁
void StackDestroy(Stack* pst);
//栈顶插入元素
void StackPush(Stack* pst, STDataType x);
//栈顶删除元素
void StackPop(Stack* pst);
//取栈顶元素
STDataType StackTop(Stack* pst);
//判断栈空
bool StackEmpty(Stack* pst);
//求栈元素个数
int StackSize(Stack* pst);
//初始化
void StackInit(Stack* pst)
{
assert(pst);
pst->a = (STDataType*)malloc(sizeof(STDataType) * 4);
pst->top = 0;
pst->capacity = 4;
}
//销毁
void StackDestroy(Stack* pst)
{
assert(pst);
free(pst->a);
pst->a = NULL;
pst->capacity = pst->top = 0;
}
//插入元素
void StackPush(Stack* pst, STDataType x)
{
assert(pst);
if (pst->top == pst->capacity)
{
STDataType* tmp = (STDataType*)realloc(pst->a, sizeof(STDataType) * pst->capacity * 2);
if (tmp == NULL)
{
printf("realloc fail\n");
exit(-1);
}
pst->a = tmp;
pst->capacity *= 2;
}
pst->a[pst->top] = x;
pst->top++;
}
//删除元素
void StackPop(Stack* pst)
{
assert(pst);
assert(!StackEmpty(pst));
pst->top--;
}
//返回栈顶元素
STDataType StackTop(Stack* pst)
{
assert(pst);
if(StackEmpty(pst))
{
return '\0';
}
//assert(!StackEmpty(pst));
return pst->a[pst->top - 1];
}
//判断栈是否已满,空返回1,非空返回0
bool StackEmpty(Stack* pst)
{
assert(pst);
return pst->top == 0;
}
//求栈中元素个数
int StackSize(Stack* pst)
{
assert(pst);
return pst->top;
}
bool isValid(char * s) {
Stack st;
StackInit(&st);
while (*s)
{
//左括号入栈
if (*s == '(' || *s == '[' || *s == '{')
{
StackPush(&st, *s);
s++;//迭代
}
else
{
if (StackEmpty(&st))
{
return false;
}
//右括号找最近的左括号匹配
char top = StackTop(&st);
if (top == '(' && *s != ')'
|| top == '[' && *s != ']'
|| top == '{' && *s != '}')
{
StackDestroy(&st);
return false;
}
else
{
//匹配就弹出左括号
StackPop(&st);
s++;//迭代
}
}
}
bool ret = StackEmpty(&st);
StackDestroy(&st);
return ret;
}