高等数学上:积分

什么是积分

在了解积分之前,我们先考虑一个问题:对于一个速度-时间函数,我们如何求解一段时间内的路程?

在大学之前的学习中,我们就知道求解这个问题相当于求解这段时间内函数图像和x轴所围成的面积。那么为什么这个面积就是路程呢?

同样我们使用极限的思想来思考这个问题,我们将时间划分为n份,当n趋于无穷小的时候,此时我们可以忽略这段时间内速度的变化,对于一个匀速运动,它的路程就等速度*时间,所以我们可以将这无穷小的时间段行走的路程记为: f ( x ) d x f(x)dx f(x)dx,观察这个式子,不正是函数图像中一小截矩形的面积,那么如果我们想求时间a到b之间的路程,只需要将区间内所有的 f ( x ) d x f(x)dx f(x)dx累加起来即可。

这就是一个积分的过程

那么如何表达这个累加的过程,通过符号 ∫ a b f ( x ) d x \displaystyle \int^{b}_{a}{f(x)dx} abf(x)dx,求解这个值就是定积分
在这里插入图片描述
除了定积分,还有不定积分,再了解不定积分之前,我们先介绍积分中最核心的公式:
牛顿 − 莱布尼茨公式: ∫ a b f ( x ) d x = F ( b ) − F ( a ) 牛顿-莱布尼茨公式:\displaystyle \int^{b}_{a}{f(x)dx}=F(b) - F(a) 牛顿莱布尼茨公式:abf(x)dx=F(b)F(a)
其中 F ( x ) ˙ = f ( x ) \dot{F(x)} = f(x) F(x)˙=f(x),所以求解定积分的关键在于如何求f(x)的原函数,求原函数也称为求它的不定积分,记为:
∫ f ( x ) d x = F ( x ) \displaystyle \int{f(x)dx}=F(x) f(x)dx=F(x)

常用积分

在这里插入图片描述

求解不定积分

换元法

对于 a x + b ax+b ax+b的类型, 可以用令 t = a x + b t = ax + b t=ax+b进行化简
例题:
在这里插入图片描述

凑微分法

首先我们知道 d y = y ˙ d x dy=\dot{y}dx dy=y˙dx,也就是说对于 f ( x ) d x f(x)dx f(x)dx如果想把 f ( x ) f(x) f(x) 写入 d x dx dx当中,那么应该对 f ( x ) f(x) f(x)求原函数。
根据这个规则,对于一些题目可以先将一部分挪到dx后

例如: s i n x d x = d ( − c o s x ) sinxdx=d(-cosx) sinxdx=d(cosx),对照表达式 y ˙ d x = d y \dot{y}dx = dy y˙dx=dy,这个例子中 y ˙ = s i n x , y = − c o s x \dot{y} = sinx,y=-cosx y˙=sinx,y=cosx

例题: ∫ s i n x c o s x d x = − ∫ 1 c o s x d ( c o s x ) ,令 c o s x = t ,得 − ∫ 1 t d ( t ) = − l n ∣ t ∣ + C = − l n ∣ c o s x ∣ + C \displaystyle \int{\frac{sinx}{cosx}dx} =-\displaystyle \int{\frac{1}{cosx}d(cosx)},令cosx=t,得-\displaystyle \int{\frac{1}{t}d(t)}=-ln|t|+C=-ln|cosx|+C cosxsinxdx=cosx1d(cosx),令cosx=t,得t1d(t)=lnt+C=lncosx+C

小技巧: 对于f(x)中仅有cos和sin得情况,可用以下技巧,快速判断出如何凑微分
在这里插入图片描述

根式\三角变化

对于 f ( x ) f(x) f(x)中含有根号时,可分为两种情况:

  1. 根号内为x得一次多项式,那么直接令根号部分等于t进行换元
    例题:
    在这里插入图片描述
  2. 根号下为x得二次多项式,可以采用勾股定理,采用任意一个锐角进行换元
    在这里插入图片描述
    例题:
    在这里插入图片描述

分部积分

分部积分的推到运用了,大面积 - 剩余面积 = 所需面积 的思想:
在这里插入图片描述
那么y = f(x)的定积分如何求呢?我们可以用大矩形减去小矩形减去刚刚求得积分:
在这里插入图片描述
那么对于求一个函数得定积分,我们可以写出以下通式:
∫ x 1 x 2 y d x + ∫ y 1 y 2 x d y = x 2 ∗ y 2 − x 1 ∗ y 1 = x y ∣ x 1 x 2 \displaystyle \int^{x2}_{x1}ydx+ \displaystyle \int^{y2}_{y1}xdy=x2*y2-x1*y1=xy|{^{x2}_{x1}} x1x2ydx+y1y2xdy=x2y2x1y1=xyx1x2
所以有:
∫ y d x = x y − ∫ x d y \displaystyle \int ydx=xy - \displaystyle \int xdy ydx=xyxdy

假设u、v是关于x得函数,则:
∫ u v ˙ d x = ∫ u d v = u v − ∫ v d u \displaystyle \int u\dot{v}dx=\displaystyle \int udv=uv - \displaystyle \int vdu uv˙dx=udv=uvvdu

分部积分常运用于被积函数是两个不同类型函数相乘的情况。

例题:
在这里插入图片描述
小技巧:如何判断那个函数优先和dx凑微分,可用以下顺序

反对幂指三(反三角函数、对数函数、幂函数、指数函数、三角函数)
越是靠后类型的函数,越优先与“dx”结合.

求解定积分

会求不定积分以后,定积分的求解就变得简单,直接套用牛顿-莱布尼茨公式即可。尤其需要注意的是!! 当你用换元法进行化简以后得到的函数是 F ( t ) F(t) F(t)此时需要注意,积分上下限也要跟着改变。

如例题:
在这里插入图片描述

变上限积分

什么是变上限积分:当一个积分,他的上限是自变量,而其定积分的值为因变量,这样 S = ∫ a x f ( t ) d t S=\displaystyle \int^{x}_{a}f(t)dt S=axf(t)dt
那么这样的变上限积分的导数就等于f(x)
在这里插入图片描述
运用极限的思想,当x增加的足够小,此时面积S的增长可以近似的认为等于f(x)的值。所以 d S d x = f ( x ) \displaystyle\frac {dS}{dx}=f(x) dxdS=f(x)

例题:
在这里插入图片描述

参考文献

  1. 【高等数学(上)】6小时从0基础直追满绩!
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值