经典的归并排序,相当于两个数组已经排好序,要合并到一起。
在合并的过程中,我们可以找到中位数
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int n1 = nums1.size(), n2 = nums2.size();
int n = (n1+n2)/2;
bool even = !(n&1); //判断合并后数组长度的奇偶
int curn, pre; //curn记录选择哪个数组中的值,并没有真的合并
for (int i=0, j=0, nn=0; i < n1 || j < n2; nn++) {
if (i < n1 && j < n2)
if (nums1[i]<nums2[j]) curn = nums1[i++];
else curn = nums2[j++];
else if (i < n1) curn = nums1[i++];
else curn = nums2[j++];
// 如果长度为偶数,需要取两个数的均值
if (even && nn == n-1) pre = curn;
if (nn == n) return even?(pre+curn)/2.0:curn;
}
}
};
可以从两个数组的中间开始搜索,在实际情况中会优化很多