题目:
求出字符串中回文串序列数最小是多少。UAV11584
思路很简单,状态d(i)表示成前i个子串中的回文序列数目的最小值,那么状态转移方程为d(i)=min(d(i),d(j)+1)(当str(i,j)为回文串时),注意对d(i)的初始化,然后每次判断str(j+1,i),因为d(j)(也就是j以前的最小串的数值)我已经知道了。动态规划的问题,在确定好状态之后,可以举个小例子按照定义的状态模拟一遍状态转换的思路,才不会出现问题。
AC代码:
// UVA11584.cpp : 定义控制台应用程序的入口点。
//
#include <iostream>
#include <string.h>
#include <algorithm>
#define INF 1000000
using namespace std;
const int maxn = 1005;
int d[maxn];
char str[maxn];
//两头向中间搜,判断回文串
//偶数时length最后=0,奇数时最后等于1,能够递归到最后就说明是回文数
int IsPalindrome(int low, int high, char *str, int length)
{
if (length == 0 || length == 1)
return 1;
if (str[low] != str[high])
return 0;
return IsPalindrome(low + 1, high - 1, str, length - 2);
}
int main()
{
int num = 0;
string str_temp;
cin >> num;
for (int i = 0; i < num; i++)
{
memset(str, 0, sizeof(str));
memset(d, INF, sizeof(d));
cin >> str;
int len = strlen(str);
bool flag = false;
for (int i = 0; i < len;i++)
if (IsPalindrome(0, i, str, i + 1))d[i] = 1;
for (int i = 0; i < len; i++)
for (int j = 0; j <= i; j++)
{
if (IsPalindrome(j + 1, i, str, i - j))
d[i] = min(d[i], d[j] + 1);
}
cout << d[len - 1] << endl;
}
return 0;
}