(二叉树)求树的最小深度,平衡树的判定,判定树是否相同,判定对称树

14 篇文章 0 订阅
5 篇文章 0 订阅

本篇文章主要对树的常见的算法做一个总结,如果知道思路,写起来代码是非常简单的,不了解的话可能代码会又臭又长,标题中的4类问题在本文中均由DFS实现。

1、求树的最小深度

给出一道leetcode题目
111. Minimum Depth of Binary Tree
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
   int min_;
    void dfs(TreeNode* p,int depth)
    {
        if (p->left!=NULL ) //左子非空,带入左子且长度+1
        dfs(p->left, depth + 1);

    if(p->right!=NULL) //右子同理
        dfs(p->right,depth+1);

    if (p->left == NULL && p->right==NULL)//注意这里的判断很重要,不能递归到p==NULL,这样的话是无法判断有没有到达根节点的,可能是某个节点的没有某个子节点也可能会这样
        //此时访问到末端节点,若得出的长度比当前min小,赋给min
        min_ = min(min_,depth);
    }
    int minDepth(TreeNode* root) {
        min_=INT_MAX;
        if(root == NULL)return 0;
         dfs(root,1);
        return min_;
    }
};

还有另一种看起来更简便的的写法

int minDepth(TreeNode root) {
    if(root==null) return 0; //1
    else if(root.left!=null && root.right !=null) return 1 + Math.min(minDepth(root.left), minDepth(root.right)); //2
    else return 1 + minDepth(root.left) + minDepth(root.right); //3
    //最后一行中minDepth(root.left)和minDepth(root.right)至少一个为0
}

2、平衡树的判定

同样给出leetcode题目
110. Balanced Binary Tree
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:

    int dfs(TreeNode*  root)
    {
        if(root==NULL)return 0;

        int leftHeight = dfs(root->left);
        if(leftHeight==-1)return -1;

        int rightHeight = dfs(root->right);
        if(rightHeight==-1)return -1;

        if(abs(leftHeight-rightHeight)>1)return -1;

        return max (leftHeight, rightHeight) + 1;
    }
    bool isBalanced(TreeNode* root) {
        if(dfs(root)!=-1)
            return true;
        else return false;
    }
};

3、两颗树相同的判定

100Same Tree
Given two binary trees, write a function to check if they are equal or not.
Two binary trees are considered equal if they are structurally identical and the nodes have the same value.
需要注意的一点是除了判断指针指向的val是否相同外,还有判断两个指针本身是否相同。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    bool dfs(TreeNode* p, TreeNode* q){
        if(p==NULL||q==NULL)return p==q;

        return (p->val==q->val&&dfs(p->left,q->left)&&dfs(p->right,q->right));
    }
    bool isSameTree(TreeNode* p, TreeNode* q) {
            return dfs(p,q);
        }

};

4、判断树自身是否对称

101Symmetric Tree
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree [1,2,2,3,4,4,3] is symmetric:
1
/ \
2 2
/ \ / \
3 4 4 3
But the following [1,2,2,null,3,null,3] is not:
1
/ \
2 2
\ \
3 3
利用3中的判定两树相同的算法即可,稍微做一点改变。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    bool dfs(TreeNode* p, TreeNode* q){
        if(p==NULL||q==NULL)return p==q;

        return (p->val==q->val&&dfs(p->left,q->right)&&dfs(p->right,q->left));
    }
    bool isSymmetric(TreeNode* root) {
        if(root==NULL)return true;

        return   dfs(root->left,root->right);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值