ACcoders Problem 2051 题解

题意

在这里插入图片描述

如上图,有一个生日蛋糕,一共有 m m m 层(层数从上到下递增),体积为 n n n π \pi π 忽略不计),每层的半径和高都严格单调递增,问符合这些条件的生日蛋糕表面积最小为多少(不算底面积)?

思路

如上图,我们可以观察到红色部分拼合起来正好为一个底面积(此后式子中 π \pi π 忽略不计),所以面积即为 r m 2 r^{2}_{m} rm2

然后我们再计算蓝色部分。侧面积为 ∑ i = 1 m 2 r i h i \displaystyle \sum_{i=1}^{m}2r_{i}h_{i} i=1m2rihi,且根据题意中的单调性,又可以列出两条式子,分别为
r i ≤ r i + 1 − 1 , h i ≤ h i + 1 − 1 r_{i}\le r_{i+1}-1,h_{i}\le h_{i+1}-1 riri+11,hihi+11

考虑搜索,每次传入三个参数,分别为当前层数 u u u,第 m m m u + 1 u+1 u+1 层的总表面积 S S S,第 m m m u + 1 u+1 u+1 层的总体积 V V V

我们考虑再预处理出两个数组,一个是从 1 1 1 u u u 层的最小侧面积和 m i n S minS minS,另一个是从 1 1 1 u u u 层的最小体积和 m i n V minV minV。根据刚刚的式子,每次半径最小与相邻层差1,所以从 1 1 1 m m m 层依次枚举,每次的半径也就是对应的层数,随后以 i i i 为半径来套公式。

随后,我们进行剪枝操作。

剪枝 1,搜索顺序

考虑从底向顶枚举层数。枚举 h , r h,r h,r 时应该先枚举 r r r,因为在圆柱体积公式中, r r r 是二次幂,而 h h h 是一次幂,显然 r r r 贡献更大。还是根据刚刚的式子所以第 u u u 层半径最小也就为 u u u h h h 也是同理。那最大值该怎么来算呢?又是根据一开始列出的式子,与相邻层数差 1 1 1,所以最多能取到 r i + 1 − 1 r_{i+1}-1 ri+11 h h h 也是同理。但是还没完,因为总体积最多为 n n n,所以现在体积最多还剩下 n − V n-V nV,那么当前层也就是 r 2 × h ≤ n − v r^{2}\times h\le n-v r2×hnv(有可能没全用完,所以是小于等于),设此时 h h h 为它最小的时候 1 1 1,那么这个式子就能变成
r ≤ n − v , h ≤ n − v r 2 r\le\sqrt{n-v},h\le \frac{n-v}{r^{2}} rnv ,hr2nv

这也是一种最大值可能,因为要使搜索过程更优,所以取最小值。

剪枝 2,可行性剪枝

如果当前已经有的体积加上还没被用过的体积和的最小值(就是我们之前已处理的 m i n V minV minV),已经不符合条件了,也就是大于 n n n 了,就不可能有符合要求的答案了,直接返回

剪枝 3,最优性剪枝

如果当前已经有的表面积加上还没被用过的表面积和的最小值(就是我们之前已处理的 m i n S minS minS),不比我们的最优结果更优,再求它也就没有意义了,直接返回。

剪枝 4,聪明の剪枝

我们还可以考虑一下表面积与体积之间的关系。根据刚才的最优性剪枝,如果当前已经有的表面积加上还没被用过的表面积和的最小值不比我们的最优结果更优就返回,如果我们推出一个关系,还没被用过的表面积和的最小值大于 x x x,那么这个 x x x 加上当前已经有的表面积还大于最优结果,那也可以再剪枝。结论为 x = 2 ( n − v ) r u + 1 \displaystyle x=\frac{2(n-v)}{r_{u+1}} x=ru+12(nv),以下为证明(从第 1 1 1 u u u 层的表面积记为 S 1 − u S_{1-u} S1u):
S 1 − u = ∑ i = 1 u 2 r i h i = ∑ i = 1 u 2 r i h i × r u + 1 1 r u + 1 = 2 r u + 1 ∑ i = 1 u r i h i r u + 1 > 2 r u + 1 ∑ i = 1 u r i 2 h i \displaystyle S_{1-u}=\sum_{i=1}^{u}2r_{i}h_{i}=\sum_{i=1}^{u}2r_{i}h_{i}\times r_{u+1}\frac{1}{r_{u+1}}=\frac{2}{r_{u+1}}\sum_{i=1}^{u}r_{i}h_{i}r_{u+1}>\frac{2}{r_{u+1}}\sum_{i=1}^{u}r_{i}^{2}h_{i} S1u=i=1u2rihi=i=1u2rihi×ru+1ru+11=ru+12i=1urihiru+1>ru+12i=1uri2hi

我们知道, ∑ i = 1 u r i 2 h i \displaystyle \sum_{i=1}^{u}r_{i}^{2}h_{i} i=1uri2hi 即为 n − V n-V nV,又得
S 1 − u > 2 ( n − V ) r u + 1 \displaystyle S_{1-u}>\frac{2(n-V)}{r_{u+1}} S1u>ru+12(nV)

所以,当 S + 2 ( n − V ) r u + 1 > a n s S+\displaystyle \frac{2(n-V)}{r_{u+1}}>ans S+ru+12(nV)>ans 的时候,也可以剪枝。

代码

#include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
int mins[1000001];
int minv[1000001];
int R[100001],H[100001];
int n,m,ans=INF;
void dfs(int u,int S,int V)
{
	if(V+minv[u]>n) return ;
	if(S+mins[u]>=ans) return ;
	if(S+2*(n-V)/R[u+1]>=ans) return ;
	if(!u)
	{
		if(V==n) 
			ans=min(ans,S);
		return ;
	}
	for(int i=min(R[u+1]-1,(int)sqrt(n-V));i>=u;i--)
		for(int j=min(H[u+1]-1,(n-V)/i/i);j>=u;j--)
		{
			int t=0;
			if(u==m) t=i*i;
			R[u]=i;H[u]=j;
			dfs(u-1,S+2*i*j+t,V+i*i*j);
		}
	return ;
}
int main()
{
	scanf("%d %d",&n,&m);
	for(int i=1;i<=m;i++)
	{
		minv[i]=minv[i-1]+i*i*i;
		mins[i]=mins[i-1]+2*i*i;
	}
	R[m+1]=H[m+1]=INF;
	dfs(m,0,0);
	if(ans==INF) puts("-1");
	else printf("%d",ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值