- dinic在思想上是对原图分层得到层次图,然后找到当前层次图下的得到极大流(阻塞流),不断重复这个过程直到不再有增广路为止;
- 将以前写的模板优化修改后的版本,增加了当前弧优化;
- 看过紫书上的版本后感觉那个写法性能应该更好,当前弧优化的作用更高,但实际跑下来(洛谷模板)还是之前的那个一次bfs对多次dfs的版本跑的快一些,因此这里暂时保留之前版本;
#include<iostream>
#include<queue>
#include<cstring>
#include<cstdio>
using namespace std;
const int inf=0x7f7f7f7f;
long long n,m,s,t,cnt=1,last[10005],x,y,z,cur[10005],ceng[10005];
struct edge{
long long v,w,next;
}e[200100];
inline void inserts(int u,int v,int w)
{
cnt++;
e[cnt].w=w;
e[cnt].v=v;
e[cnt].next=last[u];
last[u]=cnt;
}
void read(long long & x)
{
char c=getchar();x=0;
while(c<'0'||c>'9')c=getchar();
while(c>='0'&&c<='9')
x=x*10+c-48,c=getchar();
}
bool bfs()
{
queue<int>q;
memset(ceng,0,sizeof(ceng));
ceng[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();q.pop();
for(int i=last[u];i;i=e[i].next)
{
int v=e[i].v,w=e[i].w;
if(ceng[v]==0&&w>0)
{
ceng[v]=ceng[u]+1;
q.push(v);
}
}
}
return ceng[t];
}
long long dfs(int u,long long dis)
{
if(u==t)
return dis;
for(int i=cur[u];i;i=e[i].next)
{
cur[u]=e[i].next;
long long v=e[i].v,w=e[i].w;
if(ceng[v]==ceng[u]+1&&w!=0)
{
long long di=dfs(v,min(dis,w));
if(di>0)
{
e[i].w-=di;
e[i^1].w+=di;
return di;
}
}
}
return 0;
}
long long dinic()
{
long long ans=0;
while(bfs())
{
for(int i=1;i<=n;i++)
cur[i]=last[i];
while(long long d=dfs(s,inf))
ans+=d;
}
return ans;
}
int main()
{
read(n);read(m);read(s);read(t);
for(int i=1;i<=m;i++)
{
read(x);read(y);read(z);
inserts(x,y,z);
inserts(y,x,0);
}
long long ans=dinic();
cout<<ans;
return 0;
}